Neural ordinary differential equations (NODEs) -- parametrizations of differential equations using neural networks -- have shown tremendous promise in learning models of unknown continuous-time dynamical systems from data. However, every forward evaluation of a NODE requires numerical integration of the neural network used to capture the system dynamics, making their training prohibitively expensive. Existing works rely on off-the-shelf adaptive step-size numerical integration schemes, which often require an excessive number of evaluations of the underlying dynamics network to obtain sufficient accuracy for training. By contrast, we accelerate the evaluation and the training of NODEs by proposing a data-driven approach to their numerical integration. The proposed Taylor-Lagrange NODEs (TL-NODEs) use a fixed-order Taylor expansion for numerical integration, while also learning to estimate the expansion's approximation error. As a result, the proposed approach achieves the same accuracy as adaptive step-size schemes while employing only low-order Taylor expansions, thus greatly reducing the computational cost necessary to integrate the NODE. A suite of numerical experiments, including modeling dynamical systems, image classification, and density estimation, demonstrate that TL-NODEs can be trained more than an order of magnitude faster than state-of-the-art approaches, without any loss in performance.
translated by 谷歌翻译
我们提出了特征神经常规差分方程(C节点),该框架用于扩展神经常规微分方程(节点)之外的缺点。虽然节点模型将潜在状态的演变为对颂歌的解决方案,但是所提出的C节点模拟了潜在的潜在的演变作为其特征的一阶准线性部分微分方程(PDE)的解决方案,定义为PDE减少到ODES的曲线。反过来,还原允许应用标准框架,以解决PDE设置的杂散。另外,所提出的框架可以作为现有节点架构的扩展来投用,从而允许使用现有的黑盒颂歌求解器。我们证明了C节点框架通过展示不能由节点表示的功能来扩展经典节点,而是由C节点表示。我们通过在许多合成和实际数据场景中展示其性能,进一步研究了C节点框架的功效。经验结果展示了CIFAR-10,SVHN和MNIST数据集的提出方法提供的改进,如类似的计算预算作为现有节点方法。
translated by 谷歌翻译
Effective inclusion of physics-based knowledge into deep neural network models of dynamical systems can greatly improve data efficiency and generalization. Such a-priori knowledge might arise from physical principles (e.g., conservation laws) or from the system's design (e.g., the Jacobian matrix of a robot), even if large portions of the system dynamics remain unknown. We develop a framework to learn dynamics models from trajectory data while incorporating a-priori system knowledge as inductive bias. More specifically, the proposed framework uses physics-based side information to inform the structure of the neural network itself, and to place constraints on the values of the outputs and the internal states of the model. It represents the system's vector field as a composition of known and unknown functions, the latter of which are parametrized by neural networks. The physics-informed constraints are enforced via the augmented Lagrangian method during the model's training. We experimentally demonstrate the benefits of the proposed approach on a variety of dynamical systems -- including a benchmark suite of robotics environments featuring large state spaces, non-linear dynamics, external forces, contact forces, and control inputs. By exploiting a-priori system knowledge during training, the proposed approach learns to predict the system dynamics two orders of magnitude more accurately than a baseline approach that does not include prior knowledge, given the same training dataset.
translated by 谷歌翻译
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
translated by 谷歌翻译
Neural ordinary differential equations (neural ODEs) have emerged as a novel network architecture that bridges dynamical systems and deep learning. However, the gradient obtained with the continuous adjoint method in the vanilla neural ODE is not reverse-accurate. Other approaches suffer either from an excessive memory requirement due to deep computational graphs or from limited choices for the time integration scheme, hampering their application to large-scale complex dynamical systems. To achieve accurate gradients without compromising memory efficiency and flexibility, we present a new neural ODE framework, PNODE, based on high-level discrete adjoint algorithmic differentiation. By leveraging discrete adjoint time integrators and advanced checkpointing strategies tailored for these integrators, PNODE can provide a balance between memory and computational costs, while computing the gradients consistently and accurately. We provide an open-source implementation based on PyTorch and PETSc, one of the most commonly used portable, scalable scientific computing libraries. We demonstrate the performance through extensive numerical experiments on image classification and continuous normalizing flow problems. We show that PNODE achieves the highest memory efficiency when compared with other reverse-accurate methods. On the image classification problems, PNODE is up to two times faster than the vanilla neural ODE and up to 2.3 times faster than the best existing reverse-accurate method. We also show that PNODE enables the use of the implicit time integration methods that are needed for stiff dynamical systems.
translated by 谷歌翻译
我们研究了科学计算的数值算法的元学习,它将一般算法结构的数学驱动,手工设计与特定的任务类的数据驱动的适应相结合。这表示从数值分析中的经典方法的偏离,这通常不具有这种基于学习的自适应。作为一个案例研究,我们开发了一种机器学习方法,基于Runge-Kutta(RK)Integrator架构,自动学习用于常用方程式(ODES)形式的初始值问题的有效求解器。通过组合神经网络近似和元学习,我们表明我们可以获得针对目标差分方程系的高阶集成商,而无需手头计算积分器系数。此外,我们证明,在某些情况下,我们可以获得古典RK方法的卓越性能。这可以归因于通过该方法识别和利用ode系列的某些属性。总的来说,这项工作展示了基于学习的基于学习的方法,用于设计差分方程的数值解的算法,一种方法可以容易地扩展到其他数值任务。
translated by 谷歌翻译
Many dynamical systems -- from robots interacting with their surroundings to large-scale multiphysics systems -- involve a number of interacting subsystems. Toward the objective of learning composite models of such systems from data, we present i) a framework for compositional neural networks, ii) algorithms to train these models, iii) a method to compose the learned models, iv) theoretical results that bound the error of the resulting composite models, and v) a method to learn the composition itself, when it is not known a prior. The end result is a modular approach to learning: neural network submodels are trained on trajectory data generated by relatively simple subsystems, and the dynamics of more complex composite systems are then predicted without requiring additional data generated by the composite systems themselves. We achieve this compositionality by representing the system of interest, as well as each of its subsystems, as a port-Hamiltonian neural network (PHNN) -- a class of neural ordinary differential equations that uses the port-Hamiltonian systems formulation as inductive bias. We compose collections of PHNNs by using the system's physics-informed interconnection structure, which may be known a priori, or may itself be learned from data. We demonstrate the novel capabilities of the proposed framework through numerical examples involving interacting spring-mass-damper systems. Models of these systems, which include nonlinear energy dissipation and control inputs, are learned independently. Accurate compositions are learned using an amount of training data that is negligible in comparison with that required to train a new model from scratch. Finally, we observe that the composite PHNNs enjoy properties of port-Hamiltonian systems, such as cyclo-passivity -- a property that is useful for control purposes.
translated by 谷歌翻译
普通微分方程和神经网络的组合,即神经普通微分方程(神经ode),已从各个角度广泛研究。但是,在神经ode中解密的数值整合仍然是一个开放的挑战,因为许多研究表明,数值整合会显着影响模型的性能。在本文中,我们提出了反修改的微分方程(IMDE),以阐明数值整合对训练神经模型的影响。 IMDE取决于学习任务和受雇的ODE求解器。结果表明,训练神经模型实际上返回IMDE的紧密近似值,而不是真实的ode。在IMDE的帮助下,我们推断出(i)学习模型与真实颂歌之间的差异是由离散误差和学习损失的总和界定的; (ii)使用非透明数值整合的神经颂歌理论上无法学习保护定律。进行了几项实验以在数值上验证我们的理论分析。
translated by 谷歌翻译
差分方程管理的学习动态对于预测和控制科学和工程系统来说至关重要。神经常规方程(节点)是一种与微分方程集成的深度学习模型,最近是由于其对不规则样本的鲁棒性及其对高维输入的灵活性而流行的学习动态。然而,节点的训练对数值求解器的精度敏感,这使得节点的收敛不稳定,特别是对于不稳定的动态系统。在本文中,为了减少对数值求解器的依赖,我们建议提高节点训练中的监督信号。具体地,我们预先训练神经差分运算符(NDO)以输出衍生物的估计用作额外的监督信号。 NDO在一类基础函数上预先培训,并将这些功能的轨迹样本之间的映射学习到其衍生物。为了利用来自NDO的轨迹信号和估计的衍生工具,我们提出了一种称为NDO-Node的算法,其中损耗函数包含两个术语:真正轨迹样本的适应性以及由输出的估计衍生物的适应度预先训练的NDO。各种动力学的实验表明,我们提出的NDO-Node可以一致地用一个预先训练的NDO来改善预测精度。特别是对于僵硬的杂散,我们观察到与其他正则化方法相比,NDO-Node可以更准确地捕获动态的过渡。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
扩散概率模型(DPM)是新兴的强大生成模型。尽管具有高质量的生成性能,但DPM仍然遭受缓慢采样的苦难,因为它们通常需要数百或数千个大型神经网络的顺序函数评估(步骤)来绘制样本。可以将来自DPM的采样视为求解相应的扩散普通微分方程(ODE)。在这项工作中,我们提出了扩散ODE的溶液的精确表述。该公式通过分析计算解决方案的线性部分,而不是将所有术语留给先前工作中采用的黑盒ode求解器。通过应用可变化的更改,可以将解决方案等效地简化为神经网络的指数加权积分。根据我们的公式,我们提出了DPM-Solver,这是一种通过收敛顺序保证的快速专用高阶求解器。 DPM溶剂适用于离散时间和连续时间DPM,而无需进行任何进一步的培训。实验结果表明,DPM-Solver可以在各种数据集上的10至20个功能评估中生成高质量的样本。我们在10个功能评估中实现了4.70 FID,在CIFAR10数据集上进行20个功能评估中的2.87 FID,与以前的各种数据集中的先前最先进的无培训样本器相比,$ 4 \ sim 16 \ times $速度。
translated by 谷歌翻译
我们提出了一种新颖的二阶优化框架,用于训练新兴的深度连续时间模型,特别是神经常规方程(神经杂物杂物)。由于他们的训练已经涉及昂贵的梯度计算来通过求解向后ode,因此导出有效的二阶方法变得高度不变。然而,灵感来自最近的最佳控制(OC)对训练深网络的解释,我们表明,可以采用称为差分编程的特定连续时间oC方法,以获得同一O(1 )内存成本。我们进一步探索了二阶衍生品的低级别表示,并表明它导致借助基于Kronecker的分子化的有效的预处理更新。由此产生的方法 - 命名的snopt - 收敛于壁钟时间中的一阶基线的速度要快得多,并且改进仍然在各种应用中保持一致,例如,图像分类,生成流量和时间序列预测。我们的框架还实现了直接的架构优化,例如神经杂物的集成时间,具有二阶反馈策略,加强了OC视角作为深度学习中优化的原则性工具。我们的代码可在https://github.com/ghliu/snopt上获得。
translated by 谷歌翻译
Xia等人的最新工作。利用了经典动量加速梯度下降的连续限制,并提出了重球神经odes。尽管该模型对香草神经ODE提供了计算效率和高效用,但这种方法通常会导致内部动力学的过度调整,从而导致对模型的不稳定训练。先前的工作通过使用临时方法来解决此问题,例如,使用特定的激活函数来界定内部动力学,但是所得模型不能满足确切的重球ode。在这项工作中,我们提出了自适应动量估计神经ODE(adamnodes),以适应性地控制经典动量方法的加速度。我们发现它的伴随状态还满足了Adamode,并且不需要先前工作所采用的临时解决方案。在评估中,我们表明adamnodes对现有神经ODE实现了最低的训练损失和功效。我们还表明,与基于经典动量的神经ODE相比,Adamnodes具有更好的训练稳定性。这一结果阐明了调整优化界提出的技术,以进一步改善神经氧的训练和推断。我们的代码可在https://github.com/pmcsh04/adamnode上找到。
translated by 谷歌翻译
最近引入的普通微分方程网络(ODE-网)在深度学习和动态系统之间建立了丰富的连接。在这项工作中,我们使用基础函数的线性组合重新考虑重量作为连续的函数,这使我们能够利用诸如功能投影的参数变换。反过来,这个视图允许我们制定处理有状态层的新型有状态ode-块。这个新的ode-块的好处是双重的:首先,它使得能够纳入有意义的连续深度批量归一代化层以实现最先进的性能;其次,它使得能够通过改变来压缩权重,而不会再培训,同时保持近最先进的性能并降低推理时间和存储器占用。使用卷积单元和(b)使用变压器编码器单元将(b)句子标记任务应用于(a)图像分类任务来证明性能。
translated by 谷歌翻译
学习如何随着时间的推移发展复杂的动态系统是系统识别中的关键挑战。对于安全关键系统,它通常是至关重要的,因为学习的模型保证会聚到一些均衡点。为此,当完全观察到各种时,用神经拉布诺夫函数规范的神经杂物是一种有希望的方法。然而,对于实际应用,部分观察是常态。正如我们将证明,未观察到的增强状态的初始化可能成为神经杂物余下的关键问题。为了减轻这个问题,我们建议增加该系统的历史历史。通过国家增强在离散时间系统中的启发,我们得到了神经延迟微分方程。基于古典时间延迟稳定性分析,我们展示了如何确保学习模型的稳定性,从理论上分析我们的方法。我们的实验表明其适用于稳定的系统识别部分观察到的系统和学习延迟反馈控制中的稳定反馈策略。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
Relying on recent research results on Neural ODEs, this paper presents a methodology for the design of state observers for nonlinear systems based on Neural ODEs, learning Luenberger-like observers and their nonlinear extension (Kazantzis-Kravaris-Luenberger (KKL) observers) for systems with partially-known nonlinear dynamics and fully unknown nonlinear dynamics, respectively. In particular, for tuneable KKL observers, the relationship between the design of the observer and its trade-off between convergence speed and robustness is analysed and used as a basis for improving the robustness of the learning-based observer in training. We illustrate the advantages of this approach in numerical simulations.
translated by 谷歌翻译
随机偏微分方程(SPDES)是在随机性影响下模拟动态系统的选择的数学工具。通过将搜索SPDE的温和解决方案作为神经定点问题,我们介绍了神经SPDE模型,以便从部分观察到的数据中使用(可能随机)的PDE溶液运营商。我们的模型为两类物理启发神经架构提供了扩展。一方面,它延伸了神经CDES,SDES,RDE - RNN的连续时间类似物,因为即使当后者在无限尺寸状态空间中演变时,它也能够处理进入的顺序信息。另一方面,它扩展了神经运营商 - 神经网络的概括到函数空间之间的模型映射 - 因为它可以用于学习解决方案运算符$(U_0,\ xi)\ MapSto U $同时上的SPDES初始条件$ u_0 $和驾驶噪声$ \ xi $的实现。神经SPDE是不变的,它可以使用基于记忆有效的隐式分化的反向化的训练,并且一旦接受训练,其评估比传统求解器快3个数量级。在包括2D随机Navier-Stokes方程的各种半线性SPDES的实验证明了神经间隙如何能够以更好的准确性学习复杂的时空动态,并仅使用适度的培训数据与所有替代模型相比。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
我们介绍了一种新的随机验证算法,该算法正式地定量了配制成连续深度模型的任何连续过程的行为稳健性。我们的算法在给定的时间范围内解决了一组全局优化(GO)问题,以构造从初始状态的球开始的所有处理执行集的紧密机箱(管)。我们称我们的算法GoTube。通过其结构,GoTube确保边界管保守达到所需的概率和最高的紧密性。 GoTube以JAX实现,并优化以扩展到复杂的连续深度神经网络模型。与用于时间持续神经网络的高级可达性分析工具相比,GoTube不会在时间步骤之间积累过度估计误差,并避免符号技术中固有的臭名昭着包装效果。我们展示了GOTUBE在初始球,速度,时间 - 地平线,任务完成和大量实验中的可扩展性方面表现出最先进的验证工具。 GOTUBE是稳定的,并在其能够扩展到以前可能的视野的能力方面来设置最先进的。
translated by 谷歌翻译