与大脑变化相关的阿尔茨海默氏病(AD)和轻度认知障碍(MCI)的评估仍然是一项艰巨的任务。最近的研究表明,多模式成像技术的组合可以更好地反映病理特征,并有助于更准确地诊断AD和MCI。在本文中,我们提出了一种新型的基于张量的多模式特征选择和回归方法,用于诊断和生物标志物对正常对照组的AD和MCI鉴定。具体而言,我们利用张量结构来利用多模式数据中固有的高级相关信息,并研究多线性回归模型中的张量级稀疏性。我们使用三种成像方式(VBM- MRI,FDG-PET和AV45-PET)具有疾病严重程度和认知评分的临床参数来分析ADNI数据的方法的实际优势。实验结果表明,我们提出的方法与疾病诊断的最新方法的优越性能以及疾病特异性区域和与模态相关的差异的鉴定。这项工作的代码可在https://github.com/junfish/bios22上公开获得。
translated by 谷歌翻译
机器学习技术通常应用于痴呆症预测缺乏其能力,共同学习多个任务,处理时间相关的异构数据和缺失值。在本文中,我们建议使用最近呈现的SShiba模型提出了一个框架,用于在缺失值的纵向数据上联合学习不同的任务。该方法使用贝叶斯变分推理来赋予缺失值并组合多个视图的信息。这样,我们可以将不同的数据视图与共同的潜在空间中的不同时间点相结合,并在同时建模和预测若干输出变量的同时学习每个时间点之间的关系。我们应用此模型以预测痴呆症中的诊断,心室体积和临床评分。结果表明,SSHIBA能够学习缺失值的良好归因,同时预测三个不同任务的同时表现出基线。
translated by 谷歌翻译
纵向和多模式数据中固有的纵向变化和互补信息在阿尔茨海默氏病(AD)预测中起重要作用,尤其是在确定即将患有AD的轻度认知障碍受试者方面。但是,纵向和多模式数据可能缺少数据,这阻碍了这些数据的有效应用。此外,以前的纵向研究需要现有的纵向数据才能实现预测,但是预计在临床实践中,将在患者的基线访问(BL)上进行AD预测。因此,我们提出了一个多视图插补和交叉注意网络(MCNET),以在统一的框架中整合数据归档和AD预测,并实现准确的AD预测。首先,提出了一种多视图插补方法与对抗性学习相结合,该方法可以处理各种缺失的数据情况并减少插补错误。其次,引入了两个跨注意区块,以利用纵向和多模式数据中的潜在关联。最后,为数据插补,纵向分类和AD预测任务而建立了多任务学习模型。当对模型进行适当训练时,可以通过BL数据利用从纵向数据中学到的疾病进展信息以改善AD预测。在BL处的两个独立的测试集和单模数据对所提出的方法进行了测试,以验证其对AD预测的有效性和灵活性。结果表明,MCNET的表现优于几种最新方法。此外,提出了MCNET的解释性。因此,我们的MCNET是一种在纵向和多模式数据分析的AD预测中具有巨大应用潜力的工具。代码可在https://github.com/meiyan88/mcnet上找到。
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是痴呆症的最常见形式,由于痴呆症的多因素病因,通常难以诊断。关于基于神经成像的基于神经成像的深度神经网络(DNN)的著作表明,结构磁共振图像(SMRI)和氟脱氧葡萄糖正电子发射层析成像(FDG-PET)可提高健康对照和受试者的研究人群的精度。与广告。但是,这一结果与既定的临床知识冲突,即FDG-PET比SMRI更好地捕获AD特定的病理。因此,我们提出了一个框架,用于对基于FDG-PET和SMRI进行多模式DNN的系统评估,并重新评估单模式DNN和多模式DNN,用于二进制健康与AD,以及三向健康/轻度的健康/轻度认知障碍/广告分类。我们的实验表明,使用FDG-PET的单模式网络的性能优于MRI(准确性0.91 vs 0.87),并且在组合时不会显示出改进。这符合有关AD生物标志物的既定临床知识,但提出了有关多模式DNN的真正好处的问题。我们认为,未来关于多模式融合的工作应系统地评估我们提出的评估框架后的个人模式的贡献。最后,我们鼓励社区超越健康与AD分类,并专注于痴呆症的鉴别诊断,在这种诊断中,在这种诊断中,融合了多模式图像信息与临床需求相符。
translated by 谷歌翻译
已经有几项尝试使用基于脑FMRI信号进行深入学习来对认知障碍疾病进行分类。但是,深度学习是一种隐藏的黑匣子模型,使得很难解释分类过程。为了解决这个问题,我们提出了一个新颖的分析框架,该框架解释了深度学习过程所产生的分类。我们首先通过基于其相似的信号模式嵌入功能来得出关注区域(ROI)功能连接网络(FCN)。然后,使用配备自我注意力的深度学习模型,我们根据其FCN对疾病进行分类。最后,为了解释分类结果,我们采用潜在的空间响应相互作用网络模型来识别与其他疾病相比表现出不同连接模式的重要功能。该提出的框架在四种类型的认知障碍中的应用表明,我们的方法对于确定重要的ROI功能有效。
translated by 谷歌翻译
阿尔茨海默病(AD)是一种不可逆的神经发电疾病的大脑。疾病可能会导致记忆力损失,难以沟通和迷失化。对于阿尔茨海默病的诊断,通常需要一系列尺度来临床评估诊断,这不仅增加了医生的工作量,而且还使诊断结果高度主观。因此,对于阿尔茨海默病,成像手段寻找早期诊断标志物已成为一个首要任务。在本文中,我们提出了一种新颖的3DMGNET架构,该架构是多基体和卷积神经网络的统一框架,以诊断阿尔茨海默病(AD)。该模型使用Open DataSet(ADNI DataSet)培训,然后使用较小的DataSet进行测试。最后,该模型为AD VS NC分类实现了92.133%的精度,并显着降低了模型参数。
translated by 谷歌翻译
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated to the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required for eliciting accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models
translated by 谷歌翻译
Neuroimaging-based prediction methods for intelligence and cognitive abilities have seen a rapid development in literature. Among different neuroimaging modalities, prediction based on functional connectivity (FC) has shown great promise. Most literature has focused on prediction using static FC, but there are limited investigations on the merits of such analysis compared to prediction based on dynamic FC or region level functional magnetic resonance imaging (fMRI) times series that encode temporal variability. To account for the temporal dynamics in fMRI data, we propose a deep neural network involving bi-directional long short-term memory (bi-LSTM) approach that also incorporates feature selection mechanism. The proposed pipeline is implemented via an efficient GPU computation framework and applied to predict intelligence scores based on region level fMRI time series as well as dynamic FC. We compare the prediction performance for different intelligence measures based on static FC, dynamic FC, and region level time series acquired from the Adolescent Brain Cognitive Development (ABCD) study involving close to 7000 individuals. Our detailed analysis illustrates that static FC consistently has inferior prediction performance compared to region level time series or dynamic FC for unimodal rest and task fMRI experiments, and in almost all cases using a combination of task and rest features. In addition, the proposed bi-LSTM pipeline based on region level time series identifies several shared and differential important brain regions across task and rest fMRI experiments that drive intelligence prediction. A test-retest analysis of the selected features shows strong reliability across cross-validation folds. Given the large sample size from ABCD study, our results provide strong evidence that superior prediction of intelligence can be achieved by accounting for temporal variations in fMRI.
translated by 谷歌翻译
Normative modelling is an emerging method for understanding the underlying heterogeneity within brain disorders like Alzheimer Disease (AD) by quantifying how each patient deviates from the expected normative pattern that has been learned from a healthy control distribution. Since AD is a multifactorial disease with more than one biological pathways, multimodal magnetic resonance imaging (MRI) neuroimaging data can provide complementary information about the disease heterogeneity. However, existing deep learning based normative models on multimodal MRI data use unimodal autoencoders with a single encoder and decoder that may fail to capture the relationship between brain measurements extracted from different MRI modalities. In this work, we propose multi-modal variational autoencoder (mmVAE) based normative modelling framework that can capture the joint distribution between different modalities to identify abnormal brain structural patterns in AD. Our multi-modal framework takes as input Freesurfer processed brain region volumes from T1-weighted (cortical and subcortical) and T2-weighed (hippocampal) scans of cognitively normal participants to learn the morphological characteristics of the healthy brain. The estimated normative model is then applied on Alzheimer Disease (AD) patients to quantify the deviation in brain volumes and identify the abnormal brain structural patterns due to the effect of the different AD stages. Our experimental results show that modeling joint distribution between the multiple MRI modalities generates deviation maps that are more sensitive to disease staging within AD, have a better correlation with patient cognition and result in higher number of brain regions with statistically significant deviations compared to a unimodal baseline model with all modalities concatenated as a single input.
translated by 谷歌翻译
医疗保健数据集对机器学习和统计数据都带来了许多挑战,因为它们的数据通常是异质的,审查的,高维的,并且缺少信息。特征选择通常用于识别重要功能,但是当应用于高维数据时,可以产生不稳定的结果,从而在每次迭代中选择一组不同的功能。通过使用特征选择合奏,可以改善特征选择的稳定性,该合奏汇总了多个基本特征选择器的结果。必须将阈值应用于最终的聚合功能集,以将相关功能与冗余功能分开。通常应用的固定阈值不保证最终选定功能仅包含相关功能。这项工作开发了几个数据驱动的阈值,以自动识别集合功能选择器中的相关特征,并评估其预测精度和稳定性。为了证明这些方法对临床数据的适用性,它们被应用于来自两个现实世界中阿尔茨海默氏病(AD)研究的数据。 AD是一种没有已知治愈方法的进行性神经退行性疾病,至少在明显症状出现之前的2-3年开始,为研究人员提供了一个机会,可以鉴定出可能识别有患AD风险的患者的早期生物标志物。通过将这些方法应用于两个数据集来标识的功能反映了广告文献中的当前发现。
translated by 谷歌翻译
主观认知下降(SCD)是阿尔茨海默氏病(AD)的临床前阶段,甚至在轻度认知障碍(MCI)之前就发生。渐进式SCD将转换为MCI,并有可能进一步发展为AD。因此,通过神经成像技术(例如,结构MRI)对进行性SCD的早期鉴定对于AD的早期干预具有巨大的临床价值。但是,现有的基于MRI的机器/深度学习方法通​​常会遇到小样本大小的问题,这对相关的神经影像学分析构成了巨大挑战。我们旨在解决本文的主要问题是如何利用相关领域(例如AD/NC)协助SCD的进展预测。同时,我们担心哪些大脑区域与进行性SCD的识别更加紧密相关。为此,我们提出了一个注意引导自动编码器模型,以进行有效的跨域适应,以促进知识转移从AD到SCD。所提出的模型由四个关键组成部分组成:1)用于学习不同域的共享子空间表示的功能编码模块,2)用于自动定义大脑中定义的兴趣障碍区域的注意模块,3)用于重构的解码模块原始输入,4)用于鉴定脑疾病的分类模块。通过对这四个模块的联合培训,可以学习域不变功能。同时,注意机制可以强调与脑部疾病相关的区域。公开可用的ADNI数据集和私人CLAS数据集的广泛实验证明了该方法的有效性。提出的模型直接可以在CPU上仅5-10秒进行训练和测试,并且适用于具有小数据集的医疗任务。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译
多视图数据是指特征被分成特征集的设置,例如因为它们对应于不同的源。堆叠惩罚的逻辑回归(Staplr)是最近引入的方法,可用于分类并自动选择对预测最重要的视图。我们将此方法的扩展引入到数据具有分层多视图结构的位置。我们还为STAPLR介绍了一个新的视图重要性措施,这使我们能够比较层次结构的任何级别的视图的重要性。我们将扩展的STAPLR算法应用于Alzheimer的疾病分类,其中来自三种扫描类型的不同MRI措施:结构MRI,扩散加权MRI和休息状态FMRI。Staplr可以识别哪种扫描类型以及MRI措施对于分类最重要,并且在分类性能方面优于弹性净回归。
translated by 谷歌翻译
阿尔茨海默氏病的准确诊断和预后对于开发新疗法和降低相关成本至关重要。最近,随着卷积神经网络的进步,已经提出了深度学习方法,以使用结构MRI自动化这两个任务。但是,这些方法通常缺乏解释性和泛化,预后表现有限。在本文中,我们提出了一个旨在克服这些局限性的新型深框架。我们的管道包括两个阶段。在第一阶段,使用125个3D U-NET来估计整个大脑的体voxelwise等级得分。然后将所得的3D地图融合,以构建一个可解释的3D分级图,以指示结构水平的疾病严重程度。结果,临床医生可以使用该地图来检测受疾病影响的大脑结构。在第二阶段,分级图和受试者的年龄用于使用图卷积神经网络进行分类。基于216名受试者的实验结果表明,与在不同数据集上进行AD诊断和预后的最新方法相比,我们的深框架的竞争性能。此外,我们发现,使用大量的U-NET处理不同的重叠大脑区域,可以提高所提出方法的概括能力。
translated by 谷歌翻译
研究了自闭症数据集,以确定自闭症和健康组之间的差异。为此,分析了这两组的静止状态功能磁共振成像(RS-FMRI)数据,并创建了大脑区域之间的连接网络。开发了几个分类框架,以区分组之间的连接模式。比较了统计推断和精度的最佳模型,并分析了精度和模型解释性之间的权衡。最后,据报道,分类精度措施证明了我们框架的性能。我们的最佳模型可以以71%的精度将自闭症和健康的患者分类为多站点I数据。
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
医疗保健数据集通常包含一组高度相关的特征,例如来自同一生物系统的特征。当将功能选择应用于这些数据集以识别最重要的功能时,由于相关功能,由于相关特征而引起的某些多变量特征选择器固有的偏差使这些方法难以区分重要的和无关的特征,并且功能选择过程的结果CAN可以解决。不稳定。已经研究了特征选择合奏,该合奏汇总了多个单个基础特征选择器的结果,已被研究为稳定特征选择结果的一种手段,但不能解决相关特征的问题。我们提出了一个新颖的框架,可以从多元特征选择器中创建特征选择集合,同时考虑了相关特征组产生的偏差,并在预处理步骤中使用团聚层次聚类。这些方法从阿尔茨海默氏病(AD)的研究中应用于两个现实世界数据集,这是一种尚未治愈且尚未完全了解的进行性神经退行性疾病。我们的结果表明,在没有聚类的情况下选择在模型中选择的功能的稳定性有明显的改善,并且这些模型选择的功能与广告文献中的发现保持一致。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是最常见的神经退行性疾病,具有最复杂的病原体之一,使有效且临床上可行的决策变得困难。这项研究的目的是开发一个新型的多模式深度学习框架,以帮助医疗专业人员进行AD诊断。我们提出了一个多模式的阿尔茨海默氏病诊断框架(MADDI),以准确检测成像,遗传和临床数据中的AD和轻度认知障碍(MCI)。 Maddi是新颖的,因为我们使用跨模式的注意力,它捕获了模态之间的相互作用 - 这种域中未探讨的方法。我们执行多级分类,这是一项艰巨的任务,考虑到MCI和AD之间的相似之处。我们与以前的最先进模型进行比较,评估注意力的重要性,并检查每种模式对模型性能的贡献。 Maddi在持有的测试集中对MCI,AD和控件进行了96.88%的精度分类。在检查不同注意力方案的贡献时,我们发现跨模式关注与自我注意力的组合表现出了最佳状态,并且模型中没有注意力层表现最差,而F1分数差异为7.9%。我们的实验强调了结构化临床数据的重要性,以帮助机器学习模型将其背景化和解释其余模式化。广泛的消融研究表明,未访问结构化临床信息的任何多模式混合物都遭受了明显的性能损失。这项研究证明了通过跨模式的注意组合多种输入方式的优点,以提供高度准确的AD诊断决策支持。
translated by 谷歌翻译