制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
我们将图形神经网络训练来自小工具N体模拟的光晕目录的神经网络,以执行宇宙学参数的无现场级别可能的推断。目录包含$ \ Lessim $ 5,000 HAROS带质量$ \ gtrsim 10^{10} 〜h^{ - 1} m_ \ odot $,定期卷为$(25〜H^{ - 1} {\ rm mpc}){\ rm mpc}) ^3 $;目录中的每个光环都具有多种特性,例如位置,质量,速度,浓度和最大圆速度。我们的模型构建为置换,翻译和旋转的不变性,不施加最低限度的规模来提取信息,并能够以平均值来推断$ \ omega _ {\ rm m} $和$ \ sigma_8 $的值$ \ sim6 \%$的相对误差分别使用位置加上速度和位置加上质量。更重要的是,我们发现我们的模型非常强大:他们可以推断出使用数千个N-n-Body模拟的Halo目录进行测试时,使用五个不同的N-进行测试时,在使用Halo目录进行测试时,$ \ omega _ {\ rm m} $和$ \ sigma_8 $身体代码:算盘,Cubep $^3 $ M,Enzo,PKDGrav3和Ramses。令人惊讶的是,经过培训的模型推断$ \ omega _ {\ rm m} $在对数千个最先进的骆驼水力动力模拟进行测试时也可以使用,该模拟使用四个不同的代码和子网格物理实现。使用诸如浓度和最大循环速度之类的光环特性允许我们的模型提取更多信息,而牺牲了模型的鲁棒性。这可能会发生,因为不同的N体代码不会在与这些参数相对应的相关尺度上收敛。
translated by 谷歌翻译
光环伴形培养基中的离子气体通过热阳光阳光层(TSZ)效应在宇宙微波背景上留下烙印。来自活性银河核(AGN)和超新星的反馈会影响晕孔集成TSZ通量的测量($ y_ \ mathrm {sz} $),并导致其与光晕质量的关系($ y_ \ mathrm {sz} -mm $ )偏离病毒定理的自相似幂律预测。我们对使用骆驼,一套流体动力模拟的套件进行了全面研究,反馈处方的差异很大。我们使用两个机器学习工具(随机森林和符号回归)的组合来搜索$ y-m $关系的类似物,这对低质量的反馈过程($ m \ sillesim 10^{14} \,h^, {-1} \,m_ \ odot $);我们发现,仅替换$ y \ rightarrow y(1+m _*/m_ \ mathrm {gas})$在关系中使其非常相似。这可以用作低质量簇和星系组的强大多波长质量代理。我们的方法通常对于提高其他天体分级关系的有效性领域通常也很有用。我们还预测,$ y-m $关系的测量值可以在反馈参数的某些组合和/或排除超级新闻和AGN反馈模型的主要部分,以提供百分比的约束。艺术流体动力模拟。我们的结果对于使用即将进行的SZ调查(例如SO,CMB-S4)和Galaxy Surveys(例如Desi和Rubin)来限制Baryonic反馈的性质。最后,我们发现,$ y-m _*$的另一种关系提供了有关反馈的补充信息,而不是$ y-m $。
translated by 谷歌翻译
了解晕星连接是基本的,以提高我们对暗物质的性质和性质的知识。在这项工作中,我们构建一个模型,鉴于IT主机的星系的位置,速度,恒星群体和半径的位置。为了捕获来自星系属性的相关性及其相位空间的相关信息,我们使用图形神经网络(GNN),该网络设计用于使用不规则和稀疏数据。我们从宇宙学和天体物理学中培训了我们在Galaxies上的模型,从宇宙学和天体物理学与机器学习模拟(骆驼)项目。我们的模型,占宇宙学和天体物理的不确定性,能够用$ \ SIM 0.2欧元的准确度来限制晕群。此外,在一套模拟上培训的GNN能够在用利用不同的代码的模拟上进行测试时保留其精度的一部分精度。 GNN的Pytorch几何实现在HTTPS://github.com/pablovd/halographnet上公开可用于github上
translated by 谷歌翻译
我们为宇宙结构形成构建了一个场级模拟器,该模拟器在非线性方案中是准确的。我们的仿真器由两个卷积神经网络组成,这些神经网络训练有素,可根据其线性输入输出N体模拟粒子的非线性位移和速度。宇宙学的依赖性是在神经网络的每一层上以样式参数的形式编码的,从而使模拟器能够有效地插入了在广泛的背景问题范围内,不同扁平$ \ lambda $ cdm宇宙之间的结构形成结果。神经网络体系结构使模型可通过构造来区分,从而为快速场水平推断提供了强大的工具。我们通过考虑几个摘要统计数据,包括具有和不带红移空间扭曲的密度谱,位移功率谱,动量功率谱,密度双光谱,光晕丰度以及带有红移空间的光晕概况,并没有红移空间,我们可以测试方法的准确性。扭曲。我们将模拟器中的这些统计数据与完整的N体结果,可乐方法和没有宇宙学依赖性的基准神经网络进行了比较。我们发现我们的仿真器将准确的结果降至$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $,代表对COLA和基金神经网络的可观改进。我们还证明,我们的模拟器很好地概括到包含原始非高斯性的初始条件,而无需任何其他样式参数或再培训。
translated by 谷歌翻译
复杂的系统(恒星,超新星,星系和群集)通常在可观察性质(例如,亮度,速度分散,振荡周期,温度)之间表现出低散射关系。这些缩放关系可以照亮底层物理,可以为估计质量和距离提供观测工具。机器学习可以在抽象的高维参数空间中寻找新的扩展关系(或对现有关系的简单扩展)提供系统的系统。我们使用称为符号回归(SR)的机器学习工具,该工具以分析方程的形式在给定的数据集中绘制模式。我们专注于Sunyaev-Zeldovich Flux $ - $群集质量关系($ Y_ \ MATHRM {SZ} -M $),它会影响来自集群丰富数据的宇宙学参数的推断。使用SR对来自IllustrySTG流体动力学模拟的数据,我们找到了一个新的群集质量代理,它结合了$ Y_ \ MATHRM {SZ} $和电离气体的浓度($ c_ \ mathrm {gas} $):$ m \ propto y_ \ mathrm {ccon} ^ {3/5} \ Equiv y_ \ mathrm {sz} ^ {3/5}(1-a \,c_ \ mathrm {gas})$。 $ y_ \ mathrm {coct} $减少预测$ m $的分散$ \ sim 20-30 $%的大型群集($ m \ gtrsim 10 ^ {14} \,h ^ { - 1} \,m_ \ oott $)在高和低频的高频上,与使用只需$ y_ \ mathrm {sz} $相比。我们表明对$ C_ \ MATHRM {GARS} $的依赖性与展示比其郊区更大的分散的集群核心。最后,我们从骆驼项目的模拟中测试$ y_ \ mathrm {cenc} $ in clusters,并显示$ y_ \ mathrm {crc} $对宇宙学,天体物理学,划分物理学和宇宙方差的变化是稳健的。我们的结果和方法可以用于电流和即将到来的CMB和X射线调查的精确多波长簇质量估计,如ACT,所以,SPT,肌肉和CMB-S4。
translated by 谷歌翻译
银河系的半分析模型(SAM)的关键要素是晕光的质量组装历史,该历史是在树结构中编码的。构建光环合并历史的最常用方法是基于高分辨率,计算密集的N体模拟的结果。我们显示机器学习(ML)技术,特别是生成的对抗网络(GAN),是一种有希望的新工具,可以通过适度的计算成本解决此问题,并保留模拟中合并树的最佳功能。我们通过使用两个Halo Finder-Tree-Tree Builder算法构建的星系及其环境(EAGLE)模拟套件的有限的合并树样品来训练我们的GAN模型:Subfind-D-D-Trees和Rockstar-Consistentrees。我们的GAN模型成功地学习了具有高时间分辨率的结构良好的合并树结构,并在考虑训练过程中最多三个变量时,重现用于训练的合并树样品的统计特征。这些输入(我们的GAN模型)也学到了其表示,是光环祖细胞的质量和最终的后代,祖细胞类型(主晕或卫星)以及祖细胞与主分支中的祖先的距离。后两个输入的包含大大改善了对光环质量生长历史的最终学识,尤其是对于子发现样的ML树。当将ML合并树的同等大小的样本与Eagle模拟的样品进行比较时,我们发现了与子发现样的ML树的更好一致性。最后,我们的基于GAN的框架可用于构建低和中间质量光环的合并历史,这是宇宙学模拟中最丰富的。
translated by 谷歌翻译
我们训练一个神经网络模型,以预测宇宙N体模拟的全相空间演化。它的成功表明,神经网络模型正在准确地近似绿色的功能扩展,该功能将模拟的初始条件与其在深层非线性方向上的后期结合到结果。我们通过评估其在具有已知精确解决方案或充分理解扩展的简单情况下的良好理解的简单案例上的表现来测试这种近似值的准确性。这些场景包括球形构型,隔离平面波和两个相互作用的平面波:与用于训练的高斯随机场有很大不同的初始条件。我们发现我们的模型可以很好地推广到这些良好理解的方案,这表明网络已经推断了一般的物理原理,并从复杂的随机高斯训练数据中学习了非线性模式耦合。这些测试还为查找模型的优势和劣势以及确定改进模型的策略提供了有用的诊断。我们还测试了仅包含横向模式的初始条件,该模式的模式不仅在其相位上有所不同,而且还与训练集中使用的纵向生长模式相比。当网络遇到与训练集正交的这些初始条件时,该模型将完全失败。除了这些简单的配置外,我们还评估了模型对N体模拟的标准初始条件的密度,位移和动量功率谱的预测。我们将这些摘要统计数据与N体结果和称为COLA的近似快速模拟方法进行了比较。我们的模型在$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $的非线性尺度上达到百分比精度,代表了对COLA的显着改进。
translated by 谷歌翻译
暗物质光环的质量分布是初始密度扰动通过质量积聚和合并的层次增长的结果。我们使用一个可解释的机器学习框架来提供对暗物质光环的球形平均质量概况的起源的物理见解。我们训练梯度促进的树算法,以预测聚类大小的光环的最终质量曲线,并衡量提供给算法的不同输入的重要性。我们在初始条件(ICS)中找到了两个主要量表,它们影响最终的质量曲线:大约在Haloes的Lagrangian Patch $ r_l $($ r \ sim 0.7 \,r_l $)的比例下的密度,并且在大型中-scale环境($ r \ sim 1.7〜r_l $)。该模型还标识了光环组装历史记录中的三个主要时间尺度,这些时间尺度影响最终轮廓:(i)晕圈内病毒化的,折叠的材料的形成时间,(ii)动态时间,捕获动态无移动的,插入的动态时间光环的第一个轨道(iii)的组成部分是第三个,最近的时间尺度,它捕获了对最近大规模合并事件外部特征的影响。尽管内部轮廓保留了IC的内存,但仅此信息就不足以对外部轮廓产生准确的预测。当我们添加有关Haloes的质量积聚历史的信息时,我们发现所有半径的预测概况都有显着改善。我们的机器学习框架为ICS和质量组装历史的作用提供了新的见解,并在确定集群大小的光环的最终质量概况中。
translated by 谷歌翻译
在卷积神经网络(CNNS)上建立的生成深度学习方法提供了一种用于预测宇宙学中非线性结构的伟大工具。在这项工作中,我们预测大规模的高分辨率暗物质晕,只有低分辨率暗物质的模拟。这是通过将降低的分辨率映射到共享相同宇宙学,初始条件和盒子尺寸的仿真的更高分辨率密度字段来实现。要将结构降低到8倍的质量分辨率,我们使用U-Net的变化与条件GaN,产生直观地和统计地匹配高分辨率目标的输出。这表明我们的方法可用于从低分辨率模拟通过具有可忽略的计算工作的低分辨率模拟产生高分辨率密度输出。
translated by 谷歌翻译
在整个宇宙学模拟中,初始条件中的物质密度场的性质对今天形成的结构的特征具有决定性的影响。在本文中,我们使用随机森林分类算法来推断暗物质颗粒是否追溯到初始条件,最终将在肿块上高于一些阈值的暗物质卤素。该问题可能被构成为二进制分类任务,其中物质密度字段的初始条件映射到由光环发现者程序提供的分类标签。我们的研究结果表明,随机森林是有效的工具,无法在不运行完整过程的情况下预测宇宙学模拟的输出。在将来可能使用这些技术来降低计算时间并更有效地探索不同暗物质/暗能候选对宇宙结构的形成的影响。
translated by 谷歌翻译
理论不确定性限制了我们从诸如Thermal Sunyaev-Zel'Dovich(TSZ)效应等重的宇宙学信息中提取宇宙学信息的能力。 TSZ效应由电子压力场采购,取决于通常由昂贵的流体动力模拟建模的男性物理学。我们在Illustristng-300宇宙学模拟上训练神经网络,以预测仅重力模拟的星系簇中的连续电子压力场。对于神经网络而言,建模群集具有挑战性,因为大多数气体压力集中在少数体素中,甚至最大的流体动力模拟只包含几百个可以用于训练的簇。我们选择采用旋转等效的深度体系结构直接在暗物质颗粒集上运行,而不是传统的卷积神经网(CNN)体系结构。我们认为,基于集合的体系结构比CNN具有不同的优势。例如,我们可以执行精确的旋转和置换量比,并在TSZ领域中纳入现有的知识,并与宇宙学标准的稀疏领域一起工作。我们使用单独的,物理上有意义的模块组成我们的体系结构,使其可以解释。例如,我们可以分别研究局部和集群尺度环境的影响,确定簇三轴性具有可忽略的影响,并训练一个纠正错误居中的模块。我们的模型在适合相同模拟数据的分析概况上提高了70%。我们认为,电子压力场被视为仅重力模拟的函数,具有固有的随机性,并通过向网络的条件vae扩展进行建模。这种修饰可进一步提高7%,但受我们的小型培训集的限制。 (简略)
translated by 谷歌翻译
从间接检测实验中寻找暗物质湮灭的间接检测实验的解释需要计算昂贵的宇宙射线传播模拟。在这项工作中,我们提出了一种基于经常性神经网络的新方法,可显着加速二次和暗物质银宇射线反滴角的模拟,同时实现优异的准确性。这种方法允许在宇宙射线传播模型的滋扰参数上进行高效的分析或边缘化,以便为各种暗物质模型进行参数扫描。我们确定重要的采样,具体适用于确保仅在训练有素的参数区域中评估网络。我们使用最新AMS-02 Antiproton数据在几种模型的弱相互作用的大规模粒子上呈现导出的限制。与传统方法相比,全训练网络与此工作一起作为Darkraynet释放,并通过至少两个数量级来实现运行时的加速。
translated by 谷歌翻译
The abundance of dark matter (DM) subhalos orbiting a host galaxy is a generic prediction of the cosmological framework, and is a promising way to constrain the nature of DM. In this paper, we investigate the use of machine learning-based tools to quantify the magnitude of phase-space perturbations caused by the passage of DM subhalos. A simple binary classifier and an anomaly detection model are proposed to estimate if stars or star particles close to DM subhalos are statistically detectable in simulations. The simulated datasets are three Milky Way-like galaxies and nine synthetic Gaia DR2 surveys derived from these. Firstly, we find that the anomaly detection algorithm, trained on a simulated galaxy with full 6D kinematic observables and applied on another galaxy, is nontrivially sensitive to the DM subhalo population. On the other hand, the classification-based approach is not sufficiently sensitive due to the extremely low statistics of signal stars for supervised training. Finally, the sensitivity of both algorithms in the Gaia-like surveys is negligible. The enormous size of the Gaia dataset motivates the further development of scalable and accurate data analysis methods that could be used to select potential regions of interest for DM searches to ultimately constrain the Milky Way's subhalo mass function, as well as simulations where to study the sensitivity of such methods under different signal hypotheses.
translated by 谷歌翻译
我们对托管银河系和andromeda星系的群众呈现出新的限制,并使用图形神经网络导出。我们的型号培训了骆驼项目的数千个最先进的流体动力模拟,仅利用属于晕圈的星系的位置,速度和恒星群体,并且能够对无似然推断进行无似的推理晕群,同时占宇宙学和天体物理的不确定性。我们的制约因素与其他传统方法的估计一致。
translated by 谷歌翻译
上下文:建模星系簇中的卫星星系丰度$ n_s $是建模Halo职业分布(HOD)的关键要素,Halo职业分布(HOD)本身是将观察性研究与数值模拟连接的强大工具。目的:研究宇宙学参数对宇宙学和模拟观察中卫星丰度的影响。方法:我们构建一个基于宇宙参数的卫星丰度的模拟器(hodemu,\ url {https://github.com/aragagnin/hodemu/}),基于宇宙学参数$ \ omega_m,\ omega_m,\ omega_b,\ omega_b,\ sigma_8,\ sigma_8,h__0 $和redshift $ z。 $我们使用\磁性流体动力模拟训练我们的仿真器,这些模拟跨越15个不同的宇宙学,每个宇宙学超过$ 4 $ redshift切片$ 0 <z <z <0.5,$,对于每个设置,我们适合正常化$ a $ a $,log-slope $ \ beta $和Gaussian $ n_s-m $关系的分数划分$ \ sigma $。模拟器基于多变量输出高斯过程回归(GPR)。结果:我们发现$ a $ a和$ \ beta $取决于宇宙学参数,即使很虚弱,尤其是在$ \ omega_m,$ $ \ omega_b。$ $ (磁性,插图,巴哈马)。我们还表明,卫星丰度宇宙学的依赖性在全相物理(FP)模拟,仅暗(DMO)和非辐射模拟之间有所不同。结论:这项工作提供了对高质量光环的卫星丰度的宇宙学依赖性的初步校准,我们表明,使用宇宙学参数进行建模对于解释卫星丰度是必要的,我们表明了使用FP模拟在建模该依赖性方面的重要性。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
我们开发了卷积神经网络(CNNS),快速,直接从无线电尘埃连续图像中推断出行星质量。在原始板块中的年轻行星引起的子结构可用于推断潜在的年轻行星属性。流体动力模拟已被用于研究地球属性与这些磁盘特征之间的关系。然而,这些尝试了微调的数值模拟,以一次适合一个原始磁盘,这是耗时的,或者四方平均模拟结果,以导出间隙宽度/深度和行星质量之间的一些线性关系,这丢失了信息磁盘中的不对称功能。为了应对这些缺点,我们开发了行星间隙神经网络(PGNET),以推断出2D图像的行星质量。我们首先符合张等人的网格数据。 (2018)作为分类问题。然后,通过使用近随机采样参数运行额外的模拟来分布数据集,并将行星质量和磁盘粘度一起作为回归问题衍生在一起。分类方法可以达到92 \%的准确性,而回归方法可以达到1 $ \ Sigma $ AS 0.16 DEX,用于行星质量和0.23°D磁盘粘度。我们可以在线性拟合方法中重现退化缩放$ \ alpha $ $ \ propto $ $ m_p ^ 3 $。这意味着CNN方法甚至可以用于寻找退化关系。梯度加权类激活映射有效地确认PGNETS使用适当的磁盘特征来限制行星质量。我们为张等人提供了PGNETS和传统配件方法的计划。 (2018),并讨论各种方法的优缺点。
translated by 谷歌翻译
强烈的引力透镜已成为一种有前途的方法,用于探测亚半乳尺度上的暗物质模型。最近的工作提出了Subhalo有效密度斜率比常用的Subhalo质量功能更可靠。 subhalo有效密度斜率是一个独立于对基础密度曲线的假设的测量值,可以通过传统的采样方法来推断单个Subhalos。为了超越单个Subhalo测量,我们利用机器学习的最新进展,并引入神经似然比估计器来推断Subhalos人群的有效密度斜率。我们证明我们的方法能够利用多个Subhalos(内部和跨多个图像)的统计能力来区分不同Subhalo种群的特征。神经似然比估计量对传统抽样的估计值所需的计算效率可以实现对暗物质遗传的统计研究,并且特别有用,因为我们希望从即将进行的调查中涌入强镜头系统。
translated by 谷歌翻译
我们提出了一种新方案,以补偿粒子网(PM)方案产生的小规模近似值。这种模拟是大规模结构的快速和低计算成本实现,但缺乏小规模的分辨率。为了提高其准确性,我们在模拟的微分方程中引入了额外的有效力,该方程是由作用于PM估计的引力电位的傅立叶空间神经网络参数化的。我们将获得功率谱的结果与PGD方案(潜在梯度下降方案)获得的结果进行了比较。我们注意到功率谱的项有类似的改进,但是我们发现我们的方法在互相关系数方面的表现优于PGD,并且对模拟设置的变化(不同的分辨率,不同的宇宙学)的变化更为强大。
translated by 谷歌翻译