We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
在本文中,我们在稀疏的随机上下文线性土匪中重新审视了遗憾的最小化问题,其中特征向量可能具有很大的尺寸$ d $,但是奖励功能取决于一些,例如$ s_0 \ ll d $,其中这些功能的这些功能只要。我们提出了阈值拉索匪徒,该算法(i)估算了定义奖励功能及其稀疏支持的向量,即显着特征元素,使用带有阈值的Lasso框架,以及(ii)根据此处选择手臂估计预测其支持。该算法不需要对稀疏索引$ s_0 $的先验知识,并且可以在某些对称假设下不含参数。对于这种简单的算法,我们将非偶然的遗憾上限建立为$ \ mathcal {o}(\ log d + d + \ sqrt {t})$一般,为$ \ mathcal {o} log t)$在所谓的边缘条件下(手臂奖励分离的概率条件)。以前的算法的遗憾将其缩放为$ \ Mathcal {o}(\ log D + \ \ sqrt {t \ log(d t)})$和$ \ mathcal {o}(\ log log t \ log t \ log t \ log t \ log d)$设置分别。通过数值实验,我们确认我们的算法优于现有方法。
translated by 谷歌翻译
我们研究了在高维稀疏线性上下文匪徒中动态批处理学习的问题,在给定的最大批量约束下,决策者在每个批次结束时只能观察奖励,可以动态地决定如何进行奖励。许多人将包括在下一批中(在当前批次结束时)以及每批采用哪些个性化行动选择方案。在各种实际情况下,这种批处理的限制无处不在,包括在临床试验中的营销和医疗选择中的个性化产品。我们通过后悔的下限表征了此问题中的基本学习限制,并提供了匹配的上限(直至日志因素),从而为此问题开了最佳方案。据我们所知,我们的工作为在高维稀疏线性上下文匪徒中对动态批处理学习的理论理解提供了第一个侵入。值得注意的是,即使我们的结果的一种特殊情况 - 当不存在批处理约束时 - 都会产生简单的无探索算法使用Lasso估算器,已经达到了在高维线性匪板中为标准在线学习的最小值最佳遗憾(对于No-Cargin情况),在高维上下文Bandits的新兴文献中似乎未知。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
我们建议使用$ \ tilde {o}(\ sqrt {\ kappa^{ - 1} \ phi t} \ phi t})$ hears $ t $ the $ \ phi $ phi $是$ \ phi $是最olutimut,$ \ phi $是$ \ phi $,我们提出了一种用于广义线性奖励的新颖的上下文强盗算法。上下文协方差和$ \ kappa $的特征值是奖励差异的下限。在几种实际情况下,$ \ phi = o(d)$,我们的结果是带有$ \ sqrt {d} $的广义线性模型(GLM)土匪的第一个遗憾,而无需依赖Auer [2002]的方法。我们使用一个称为双重运动估计器的新型估计器(Doubly-bobust(DR)估计器的子类,但误差较紧,我们就实现了这种结合。 Auer [2002]的方法通过丢弃观察到的奖励来实现独立性,而我们的算法则在使用我们的DDR估计器的所有情况下实现了独立性。我们还提供了一个$ o(\ kappa^{ - 1} \ phi \ log(nt)\ log t)$遗憾在概率的边缘条件下以$ n $武器约束。 Bastani和Bayati [2020]和Bastani等人给出了遗憾的界限。 [2021]在环境中,所有臂都是共同的,但系数是特定的。当所有臂的上下文都不同,但系数很常见时,我们的第一个遗憾是在线性模型或GLM的边缘条件下绑定的。我们使用合成数据和真实示例进行实证研究,证明了我们的算法的有效性。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
决策者经常面对“许多匪徒”问题,其中必须同时学习相关但异构的情境匪徒实例。例如,大型零售商可能希望在许多商店中动态地学习产品需求,以解决定价或库存问题,这使得可以共同学习为服务类似客户的商店;或者,医院网络可能希望在许多提供商中动态学习患者风险以分配个性化干预措施,这使得可以为服务类似患者群体的医院共同学习。我们研究每个匪徒实例中未知参数可以分解为全局参数加上稀疏实例特定术语的设置。然后,我们提出了一种新颖的两级估计器,通过使用强大的统计数据组合(在类似的实例中学到)和套索回归(将结果进行替代),以样本有效的方式利用这种结构。我们在强盗算法中嵌入了这个估计器,并证明它在上下文维度下,它可以改善渐近遗憾界限。这种改进是数据较差的实例的指数。我们进一步展示了我们的结果如何依赖于强盗实例的基础网络结构。
translated by 谷歌翻译
我们为线性上下文匪徒提出了一种新颖的算法(\ sqrt {dt \ log t})$遗憾,其中$ d $是上下文的尺寸,$ t $是时间范围。我们提出的算法配备了一种新型估计量,其中探索通过显式随机化嵌入。根据随机化的不同,我们提出的估计器从所有武器的上下文或选定的上下文中都取得了贡献。我们为我们的估计器建立了一个自称的绑定,这使累积遗憾的新颖分解为依赖添加剂的术语而不是乘法术语。在我们的问题设置下,我们还证明了$ \ omega(\ sqrt {dt})$的新颖下限。因此,我们提出的算法的遗憾与对数因素的下限相匹配。数值实验支持理论保证,并表明我们所提出的方法的表现优于现有的线性匪徒算法。
translated by 谷歌翻译
我们为随机线性匪徒问题提出了一种新的基于自举的在线算法。关键的想法是采用残留的自举勘探,在该探索中,代理商通过重新采样平均奖励估算的残差来估算下一步奖励。我们的算法,随机线性匪徒(\ texttt {linreboot})的残留bootstrap探索,从其重新采样分布中估算了线性奖励,并以最高的奖励估计拉动了手臂。特别是,我们为理论框架做出了一个理论框架,以使基于自举的探索机制在随机线性匪徒问题中脱颖而出。关键见解是,Bootstrap探索的强度基于在线学习模型和残差的重新采样分布之间的乐观情绪。这样的观察使我们能够证明所提出的\ texttt {linreboot}确保了高概率$ \ tilde {o}(d \ sqrt {n})$ sub-linear在温和条件下的遗憾。我们的实验支持\ texttt {重新启动}原理在线性匪徒问题的各种公式中的简易概括性,并显示了\ texttt {linreboot}的显着计算效率。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
具有低维结构的随机高维匪徒问题可用于不同的应用程序,例如在线广告和药物发现。在这项工作中,我们为此类问题提出了一种简单的统一算法,并为我们算法的遗憾上限提供了一个一般分析框架。我们表明,在一些温和的统一假设下,我们的算法可以应用于不同的高维匪徒问题。我们的框架利用低维结构来指导问题中的参数估计,因此我们的算法在套索匪徒中达到了可比的遗憾界限,以及低级别矩阵匪徒的新颖界限,组稀疏矩阵强盗和IN组中一个新问题:多代理拉索强盗。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
当动作集具有良好的曲率时,我们在任何线性匪徒算法产生的设计矩阵的特征矩阵上介绍了一个非呈现的下限。具体而言,我们表明,每当算法的预期累积后悔为$ o(\ sqrt {n})$时,预期设计矩阵的最低特征值将随着$ \ omega(\ sqrt {n})$的增长而生长为$ n $是学习范围,动作空间在最佳臂周围具有恒定的Hessian。这表明,这种作用空间在离散(即分离良好的)动作空间中迫使多项式下限而不是对数下限,如\ cite {lattimore2017end}所示。此外,虽然先前的结果仅在渐近方案(如$ n \ to \ infty $)中保留,但我们对这些``本地富裕的''动作空间的结果随时都在。此外,在温和的技术假设下,我们以高概率获得了对最小本本特征值的相似下限。我们将结果应用于两个实用的方案 - \ emph {model selection}和\ emph {clustering}在线性匪徒中。对于模型选择,我们表明了一个基于时期的线性匪徒算法适应了真实模型的复杂性,以时代数量的速率指数,借助我们的新频谱结合。对于聚类,我们考虑了一个多代理框架,我们通过利用光谱结果,该框架来证明该框架,该框架,该框架,该框架通过光谱结果,该频谱结果,该框架的结果,该频谱结果,该框架的结果,该频谱结果该框架,该框架的结果不需要强制探索 - 代理商可以运行线性匪徒算法并立即估算其基本参数,从而产生低遗憾。
translated by 谷歌翻译
本文研究了在因果图形模型中设计最佳干预措施序列的问题,以最大程度地减少对事后最佳干预的累积后悔。自然,这是一个因果匪徒问题。重点是线性结构方程模型(SEM)和软干预措施的因果匪徒。假定该图的结构是已知的,并且具有$ n $节点。每个节点都假定使用两种线性机制,一种软干预和一种观察性,产生了$ 2^n $可能的干预措施。现有的因果匪徒算法假设,至少完全指定了奖励节点父母的介入分布。但是,有$ 2^n $这样的分布(一个与每个干预措施相对应),即使在中等尺寸的图中也变得越来越高。本文分配了知道这些分布的假设。提出了两种算法,用于常见者(基于UCB)和贝叶斯(基于汤普森采样)的设置。这些算法的关键思想是避免直接估计$ 2^n $奖励分布,而是估算完全指定SEMS($ n $线性)的参数,并使用它们来计算奖励。在这两种算法中,在噪声和参数空间的有界假设下,累积遗憾的是$ \ tilde {\ cal o}(((2d)^l l \ sqrt {t})$,其中$ d $是图的最高度和$ l $是其最长因果路径的长度。
translated by 谷歌翻译
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the stateof-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied version of the contextual bandits problem. We provide the first theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of Õ(d 3/2 √ T ) (or Õ(d T log(N ))), which is the best regret bound achieved by any computationally efficient algorithm for this problem, and is within a factor of √ d (or log(N )) of the information-theoretic lower bound for this problem.
translated by 谷歌翻译
在线学习算法广泛用于网络上的搜索和内容优化,必须平衡探索和开发,可能牺牲当前用户的经验,以获得将来会导致未来更好决策的信息。虽然在最坏的情况下,与贪婪算法相比,显式探索具有许多缺点,其通过选择当前看起来最佳的动作始终“利用”。我们在数据中固有的多样性的情况下提出了明确的探索不必要。我们在最近的一系列工作中进行了线性上下围匪盗模型中贪婪算法的平滑分析。我们提高了先前的结果,表明,只要多样性条件保持,贪婪的方法几乎符合任何其他算法的最佳可能性贝叶斯遗憾率,并且这种遗憾是最多的$ \ tilde o(t ^ {1/ 3})$。
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
信息指导的采样(IDS)最近证明了其作为数据效率增强学习算法的潜力。但是,目前尚不清楚当可用上下文信息时,要优化的信息比的正确形式是什么。我们通过两个上下文强盗问题研究IDS设计:具有图形反馈和稀疏线性上下文匪徒的上下文强盗。我们证明了上下文ID比条件ID的优势,并强调考虑上下文分布的重要性。主要信息是,智能代理人应该在有条件的ID可能是近视的情况下对未来看不见的环境有益的行动进行更多的投资。我们进一步提出了基于Actor-Critic的上下文ID的计算效率版本,并在神经网络上下文的强盗上进行经验评估。
translated by 谷歌翻译
汤普森抽样(TS)吸引了对强盗区域的兴趣。它在20世纪30年代介绍,但近年来尚未经过理论上证明。其在组合多武装强盗(CMAB)设置中的所有分析都需要精确的Oracle来提供任何输入的最佳解决方案。然而,这种Oracle通常是不可行的,因为许多组合优化问题是NP - 硬,并且只有近似oracles可用。一个例子(王和陈,2018)已经表明TS的失败来学习近似Oracle。但是,此Oracle罕见,仅用于特定问题实例。它仍然是一个开放的问题,无论TS的收敛分析是否可以扩展到CMAB中的精确oracle。在本文中,我们在贪婪的Oracle下研究了这个问题,这是一个常见的(近似)Oracle,具有理论上的保证来解决许多(离线)组合优化问题。我们提供了一个问题依赖性遗憾的遗憾下限为$ \ omega(\ log t / delta ^ 2)$,以量化Ts的硬度来解决贪婪的甲骨文的CMAB问题,其中$ T $是时间范围和$ Delta $是一些奖励差距。我们还提供几乎匹配的遗憾上限。这些是TS解决CMAB与常见近似甲骨文的第一个理论结果,并打破TS无法使用近似神谕的误解。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译