我们重新审视量子状态认证的基本问题:给定混合状态$ \ rho \中的副本\ mathbb {c} ^ {d \ times d} $和混合状态$ \ sigma $的描述,决定是否$ \ sigma = \ rho $或$ \ | \ sigma - \ rho \ | _ {\ mathsf {tr}} \ ge \ epsilon $。当$ \ sigma $最大化时,这是混合性测试,众所周知,$ \ omega(d ^ {\ theta(1)} / \ epsilon ^ 2)$副本是必要的,所以确切的指数取决于测量类型学习者可以使[OW15,BCL20],并且在许多这些设置中,有一个匹配的上限[OW15,Bow19,BCL20]。可以避免这种$ d ^ {\ theta(1)} $依赖于某些类型的混合状态$ \ sigma $,例如。大约低等级的人?更常见地,是否存在一个简单的功能$ f:\ mathbb {c} ^ {d \ times d} \ to \ mathbb {r} _ {\ ge 0} $,其中一个人可以显示$ \ theta(f( \ sigma)/ \ epsilon ^ 2)$副本是必要的,并且足以就任何$ \ sigma $的国家认证?这种实例 - 最佳边界在经典分布测试的背景下是已知的,例如, [VV17]。在这里,我们为量子设置提供了这个性质的第一个界限,显示(达到日志因子),即使用非接受不连贯测量的状态认证的复杂性复杂性基本上是通过复制复杂性进行诸如$ \ sigma $之间的保真度的复杂性。和最大混合的状态。令人惊讶的是,我们的界限与经典问题的实例基本上不同,展示了两个设置之间的定性差异。
translated by 谷歌翻译
我们使用对单个的,相同的$ d $维状态的相同副本进行的测量来研究量子断层扫描和阴影断层扫描的问题。我们首先因Haah等人而重新审视已知的下限。 (2017年)在痕量距离上具有准确性$ \ epsilon $的量子断层扫描,当测量选择与先前观察到的结果无关(即它们是非适应性的)时。我们简要地证明了这一结果。当学习者使用具有恒定结果数量的测量值时,这会导致更强的下限。特别是,这严格确定了民间传说的最佳性``Pauli phymography''算法的样本复杂性。我们还得出了$ \ omega(r^2 d/\ epsilon^2)$和$ \ omega(r^2 d/\ epsilon^2)的新颖界限( R^2 d^2/\ epsilon^2)$用于学习排名$ r $状态,分别使用任意和恒定的结果测量,在非适应性情况下。除了样本复杂性,对于学习量子的实际意义,是一种实际意义的资源状态是算法使用的不同测量值的数量。我们将下限扩展到学习者从固定的$ \ exp(o(d))$测量的情况下进行自适应测量的情况。这特别意味着适应性。没有使用可有效实现的单拷贝测量结果给我们任何优势。在目标是预测给定的可观察到给定序列的期望值的情况下,我们还获得了类似的界限,该任务被称为阴影层析成像。在适应性的情况下单拷贝测量可通过多项式大小的电路实现,我们证明了基于计算给定可观察物的样本平均值的直接策略是最佳的。
translated by 谷歌翻译
我们证明了能够在$ N $ -Qubit州$ \ Rho $同时的最多$ k $ reporicas上进行纠结的速度,有$ \ rho $的属性,这需要至少订购$ 2 ^ n / k^ 2 $测量学习。但是,相同的属性只需要一个测量来学习,如果我们可以在$ k,n $的k,n $的多个副本多项式上进行纠缠测量。因为上面保持每个正整数$ k $,我们获得了一系列的任务等级,需要有效地执行更多的副本。我们介绍了一种强大的证明技术来建立我们的结果,并用它来提供用于测试量子状态的混合的新界限。
translated by 谷歌翻译
我们研究量子存储器的力量,以了解量子系统和动态的学习性质,这在物理和化学方面具有重要意义。许多最先进的学习算法需要访问额外的外部量子存储器。虽然这种量子存储器不需要先验,但在许多情况下,不利用量子存储器的算法需要比那些更多样的数据。我们表明,这种权衡在各种学习问题中是固有的。我们的结果包括以下内容:(1)我们显示以$ M $ -Qubit状态Rho执行暗影断层扫描,以M $观察到,任何没有量子存储器的算法需要$ \ omega(\ min(m,2 ^ n) )最坏情况下Rho的标准。达到对数因子,这与[HKP20]的上限匹配,完全解决了[AAR18,AR19]中的打开问题。 (2)我们在具有和不具有量子存储器之间的算法之间建立指数分离,用于纯度测试,区分扰扰和去极化的演变,以及在物理动态中揭示对称性。我们的分离通过允许更广泛的无量子存储器的算法来改善和概括[ACQ21]的工作。 (3)我们提供量子存储器和样本复杂性之间的第一个权衡。我们证明,估计所有$ N $ -Qubit Pauli可观察到的绝对值,Qumum Memory的$ K <N $ Qubits的算法需要至少$ \ omega(2 ^ {(nk)/ 3})$样本,但在那里是使用$ n $ -Qubit量子存储器的算法,该算法只需要$ o(n)$ samples。我们展示的分离足够大,并且可能已经是显而易见的,例如,数十Qubits。这提供了一种具体的路径,朝着使用量子存储器学习算法的实际优势。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
我们开发了一种高效的随机块模型中的弱恢复算法。该算法与随机块模型的Vanilla版本的最佳已知算法的统计保证匹配。从这个意义上讲,我们的结果表明,随机块模型没有稳健性。我们的工作受到最近的银行,Mohanty和Raghavendra(SODA 2021)的工作,为相应的区别问题提供了高效的算法。我们的算法及其分析显着脱离了以前的恢复。关键挑战是我们算法的特殊优化景观:种植的分区可能远非最佳意义,即完全不相关的解决方案可以实现相同的客观值。这种现象与PCA的BBP相转变的推出效应有关。据我们所知,我们的算法是第一个在非渐近设置中存在这种推出效果的鲁棒恢复。我们的算法是基于凸优化的框架的实例化(与平方和不同的不同),这对于其他鲁棒矩阵估计问题可能是有用的。我们的分析的副产物是一种通用技术,其提高了任意强大的弱恢复算法的成功(输入的随机性)从恒定(或缓慢消失)概率以指数高概率。
translated by 谷歌翻译
我们考虑了状态断层扫描的经典问题:给定未知量子状​​态$ \ rho \ in \ mathbb {c}^{d \ times d} $的副本,输出$ \ wideHat {\ rho} $ rho- \ wideHat {\ rho} \ | _ {\ Mathsf {tr}}} \ le \ varepsilon $。当一个允许在所有副本上纠缠的连贯测量值时,$ \ theta(d^2/\ varepsilon^2)$副本是必要且足够的[Haah等。 '17,O'Donnell-Wright '16]。不幸的是,达到此速率的协议会产生大量的量子内存开销,从而阻止了当前或近期设备上的实现。另一方面,使用不连贯的(单拷贝)测量的最著名协议使用$ o(d^3/\ varepsilon^2)$副本[Kueng-rauhut-terstiege '17]开放问题以了解此速度是否紧张。在这项工作中,我们通过证明任何使用不一致测量的协议(即使适应性地选择它们)需要$ \ omega(d^3/\ varepsilon^2)$副本,与[kueng的上限匹配[kueng -rauhut-terstiege '17]。我们通过一种新的证明技术来做到这一点,该技术在测量后直接界定后验分布的“倾斜”,这给出了我们下限的简短简短证明,我们认为这可能是独立的。
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
We study the relationship between adversarial robustness and differential privacy in high-dimensional algorithmic statistics. We give the first black-box reduction from privacy to robustness which can produce private estimators with optimal tradeoffs among sample complexity, accuracy, and privacy for a wide range of fundamental high-dimensional parameter estimation problems, including mean and covariance estimation. We show that this reduction can be implemented in polynomial time in some important special cases. In particular, using nearly-optimal polynomial-time robust estimators for the mean and covariance of high-dimensional Gaussians which are based on the Sum-of-Squares method, we design the first polynomial-time private estimators for these problems with nearly-optimal samples-accuracy-privacy tradeoffs. Our algorithms are also robust to a constant fraction of adversarially-corrupted samples.
translated by 谷歌翻译
我们研究了测试有序域上的离散概率分布是否是指定数量的垃圾箱的直方图。$ k $的简洁近似值的最常见工具之一是$ k $ [n] $,是概率分布,在一组$ k $间隔上是分段常数的。直方图测试问题如下:从$ [n] $上的未知分布中给定样品$ \ mathbf {p} $,我们想区分$ \ mathbf {p} $的情况从任何$ k $ - 组织图中,总变化距离的$ \ varepsilon $ -far。我们的主要结果是针对此测试问题的样本接近最佳和计算有效的算法,以及几乎匹配的(在对数因素内)样品复杂性下限。具体而言,我们表明直方图测试问题具有样品复杂性$ \ widetilde \ theta(\ sqrt {nk} / \ varepsilon + k / \ varepsilon^2 + \ sqrt {n} / \ varepsilon^2)$。
translated by 谷歌翻译
Learning about physical systems from quantum-enhanced experiments, relying on a quantum memory and quantum processing, can outperform learning from experiments in which only classical memory and processing are available. Whereas quantum advantages have been established for a variety of state learning tasks, quantum process learning allows for comparable advantages only with a careful problem formulation and is less understood. We establish an exponential quantum advantage for learning an unknown $n$-qubit quantum process $\mathcal{N}$. We show that a quantum memory allows to efficiently solve the following tasks: (a) learning the Pauli transfer matrix of an arbitrary $\mathcal{N}$, (b) predicting expectation values of bounded Pauli-sparse observables measured on the output of an arbitrary $\mathcal{N}$ upon input of a Pauli-sparse state, and (c) predicting expectation values of arbitrary bounded observables measured on the output of an unknown $\mathcal{N}$ with sparse Pauli transfer matrix upon input of an arbitrary state. With quantum memory, these tasks can be solved using linearly-in-$n$ many copies of the Choi state of $\mathcal{N}$, and even time-efficiently in the case of (b). In contrast, any learner without quantum memory requires exponentially-in-$n$ many queries, even when querying $\mathcal{N}$ on subsystems of adaptively chosen states and performing adaptively chosen measurements. In proving this separation, we extend existing shadow tomography upper and lower bounds from states to channels via the Choi-Jamiolkowski isomorphism. Moreover, we combine Pauli transfer matrix learning with polynomial interpolation techniques to develop a procedure for learning arbitrary Hamiltonians, which may have non-local all-to-all interactions, from short-time dynamics. Our results highlight the power of quantum-enhanced experiments for learning highly complex quantum dynamics.
translated by 谷歌翻译
在这项工作中,我们研究了鲁布利地学习Mallows模型的问题。我们给出了一种算法,即使其样本的常数分数是任意损坏的恒定分数,也可以准确估计中央排名。此外,我们的稳健性保证是无关的,因为我们的整体准确性不依赖于排名的替代品的数量。我们的工作可以被认为是从算法稳健统计到投票和信息聚集中的中央推理问题之一的视角的自然输注。具体而言,我们的投票规则是有效的可计算的,并且通过一大群勾结的选民无法改变其结果。
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译
我们重新审视耐受分发测试的问题。也就是说,给出来自未知分发$ P $超过$ \ {1,\ dots,n \} $的样本,它是$ \ varepsilon_1 $ -close到或$ \ varepsilon_2 $ -far从引用分发$ q $(总变化距离)?尽管过去十年来兴趣,但在极端情况下,这个问题很好。在无噪声设置(即,$ \ varepsilon_1 = 0 $)中,样本复杂性是$ \ theta(\ sqrt {n})$,强大的域大小。在频谱的另一端时,当$ \ varepsilon_1 = \ varepsilon_2 / 2 $时,样本复杂性跳转到勉强su​​blinear $ \ theta(n / \ log n)$。然而,非常少于中级制度。我们充分地表征了分发测试中的公差价格,作为$ N $,$ varepsilon_1 $,$ \ varepsilon_2 $,最多一个$ \ log n $ factor。具体来说,我们显示了\ [\ tilde \ theta \ left的样本复杂性(\ frac {\ sqrt {n}} {\ varepsilon_2 ^ {2}} + \ frac {n} {\ log n} \ cdot \ max \左\ {\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2},\ left(\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2} \右)^ {\!\!\!2} \ \ \} \右) ,\]提供两个先前已知的案例之间的顺利折衷。我们还为宽容的等价测试问题提供了类似的表征,其中$ p $和$ q $均未赘述。令人惊讶的是,在这两种情况下,对样本复杂性的主数量是比率$ \ varepsilon_1 / varepsilon_2 ^ 2 $,而不是更直观的$ \ varepsilon_1 / \ varepsilon_2 $。特别是技术兴趣是我们的下限框架,这涉及在以往的工作中处理不对称所需的新颖近似性理论工具,从而缺乏以前的作品。
translated by 谷歌翻译
聚类是无监督学习中的基本原始,它引发了丰富的计算挑战性推理任务。在这项工作中,我们专注于将$ D $ -dimential高斯混合的规范任务与未知(和可能的退化)协方差集成。最近的作品(Ghosh等人。恢复在高斯聚类实例中种植的某些隐藏结构。在许多类似的推理任务上的工作开始,这些较低界限强烈建议存在群集的固有统计到计算间隙,即群集任务是\ yringit {statistically}可能但没有\ texit {多项式 - 时间}算法成功。我们考虑的聚类任务的一个特殊情况相当于在否则随机子空间中找到种植的超立体载体的问题。我们表明,也许令人惊讶的是,这种特定的聚类模型\ extent {没有展示}统计到计算间隙,即使在这种情况下继续应用上述的低度和SOS下限。为此,我们提供了一种基于Lenstra - Lenstra - Lovasz晶格基础减少方法的多项式算法,该方法实现了$ D + 1 $样本的统计上最佳的样本复杂性。该结果扩展了猜想统计到计算间隙的问题的类问题可以通过“脆弱”多项式算法“关闭”,突出显示噪声在统计到计算间隙的发作中的关键而微妙作用。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
In many modern applications of deep learning the neural network has many more parameters than the data points used for its training. Motivated by those practices, a large body of recent theoretical research has been devoted to studying overparameterized models. One of the central phenomena in this regime is the ability of the model to interpolate noisy data, but still have test error lower than the amount of noise in that data. arXiv:1906.11300 characterized for which covariance structure of the data such a phenomenon can happen in linear regression if one considers the interpolating solution with minimum $\ell_2$-norm and the data has independent components: they gave a sharp bound on the variance term and showed that it can be small if and only if the data covariance has high effective rank in a subspace of small co-dimension. We strengthen and complete their results by eliminating the independence assumption and providing sharp bounds for the bias term. Thus, our results apply in a much more general setting than those of arXiv:1906.11300, e.g., kernel regression, and not only characterize how the noise is damped but also which part of the true signal is learned. Moreover, we extend the result to the setting of ridge regression, which allows us to explain another interesting phenomenon: we give general sufficient conditions under which the optimal regularization is negative.
translated by 谷歌翻译