The proliferation of deep learning techniques led to a wide range of advanced analytics applications in important business areas such as predictive maintenance or product recommendation. However, as the effectiveness of advanced analytics naturally depends on the availability of sufficient data, an organization's ability to exploit the benefits might be restricted by limited data or likewise data access. These challenges could force organizations to spend substantial amounts of money on data, accept constrained analytics capacities, or even turn into a showstopper for analytics projects. Against this backdrop, recent advances in deep learning to generate synthetic data may help to overcome these barriers. Despite its great potential, however, synthetic data are rarely employed. Therefore, we present a taxonomy highlighting the various facets of deploying synthetic data for advanced analytics systems. Furthermore, we identify typical application scenarios for synthetic data to assess the current state of adoption and thereby unveil missed opportunities to pave the way for further research.
translated by 谷歌翻译
异构表格数据是最常用的数据形式,对于众多关键和计算要求的应用程序至关重要。在同质数据集上,深度神经网络反复显示出卓越的性能,因此被广泛采用。但是,它们适应了推理或数据生成任务的表格数据仍然具有挑战性。为了促进该领域的进一步进展,这项工作概述了表格数据的最新深度学习方法。我们将这些方法分为三组:数据转换,专业体系结构和正则化模型。对于每个小组,我们的工作提供了主要方法的全面概述。此外,我们讨论了生成表格数据的深度学习方法,并且还提供了有关解释对表格数据的深层模型的策略的概述。因此,我们的第一个贡献是解决上述领域中的主要研究流和现有方法,同时强调相关的挑战和开放研究问题。我们的第二个贡献是在传统的机器学习方法中提供经验比较,并在五个流行的现实世界中的十种深度学习方法中,具有不同规模和不同的学习目标的经验比较。我们已将作为竞争性基准公开提供的结果表明,基于梯度增强的树合奏的算法仍然大多在监督学习任务上超过了深度学习模型,这表明对表格数据的竞争性深度学习模型的研究进度停滞不前。据我们所知,这是对表格数据深度学习方法的第一个深入概述。因此,这项工作可以成为有价值的起点,以指导对使用表格数据深入学习感兴趣的研究人员和从业人员。
translated by 谷歌翻译
过去十年已经看到人工智能(AI)的显着进展,这导致了用于解决各种问题的算法。然而,通过增加模型复杂性并采用缺乏透明度的黑匣子AI模型来满足这种成功。为了响应这种需求,已经提出了说明的AI(Xai)以使AI更透明,从而提高关键结构域中的AI。虽然有几个关于Xai主题的Xai主题的评论,但在Xai中发现了挑战和潜在的研究方向,这些挑战和研究方向被分散。因此,本研究为Xai组织的挑战和未来的研究方向提出了系统的挑战和未来研究方向:(1)基于机器学习生命周期的Xai挑战和研究方向,基于机器的挑战和研究方向阶段:设计,开发和部署。我们认为,我们的META调查通过为XAI地区的未来探索指导提供了XAI文学。
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
人工智能(AI)治理调节行使权威和控制AI的管理。它旨在通过有效利用数据并最大程度地减少与AI相关的成本和风险来利用AI。尽管AI治理和AI伦理等主题在理论,哲学,社会和监管层面上进行了详尽的讨论,但针对公司和公司的AI治理工作有限。这项工作将AI产品视为系统,在该系统中,通过机器学习(ML)模型(培训)数据传递关键功能。我们通过在AI和相关领域(例如ML)合成文献来得出一个概念框架。我们的框架将AI治理分解为数据的治理,(ML)模型和(AI)系统沿着四个维度。它与现有的IT和数据治理框架和实践有关。它可以由从业者和学者都采用。对于从业者来说,主要是研究论文的综合,但从业者的出版物和监管机构的出版物也为实施AI治理提供了宝贵的起点,而对于学者来说,该论文强调了许多AI治理领域,值得更多关注。
translated by 谷歌翻译
随着全球人口越来越多的人口驱动世界各地的快速城市化,有很大的需要蓄意审议值得生活的未来。特别是,随着现代智能城市拥抱越来越多的数据驱动的人工智能服务,值得记住技术可以促进繁荣,福祉,城市居住能力或社会正义,而是只有当它具有正确的模拟补充时(例如竭尽全力,成熟机构,负责任治理);这些智能城市的最终目标是促进和提高人类福利和社会繁荣。研究人员表明,各种技术商业模式和特征实际上可以有助于极端主义,极化,错误信息和互联网成瘾等社会问题。鉴于这些观察,解决了确保了诸如未来城市技术基岩的安全,安全和可解释性的哲学和道德问题,以为未来城市的技术基岩具有至关重要的。在全球范围内,有能够更加人性化和以人为本的技术。在本文中,我们分析和探索了在人以人为本的应用中成功部署AI的安全,鲁棒性,可解释性和道德(数据和算法)挑战的关键挑战,特别强调这些概念/挑战的融合。我们对这些关键挑战提供了对现有文献的详细审查,并分析了这些挑战中的一个可能导致他人的挑战方式或帮助解决其他挑战。本文还建议了这些域的当前限制,陷阱和未来研究方向,以及如何填补当前的空白并导致更好的解决方案。我们认为,这种严谨的分析将为域名的未来研究提供基准。
translated by 谷歌翻译
机器学习(ML)系统的开发和部署可以用现代工具轻松执行,但该过程通常是匆忙和意思是结束的。缺乏勤奋会导致技术债务,范围蠕变和未对准的目标,模型滥用和失败,以及昂贵的后果。另一方面,工程系统遵循明确定义的流程和测试标准,以简化高质量,可靠的结果的开发。极端是航天器系统,其中关键任务措施和鲁棒性在开发过程中根深蒂固。借鉴航天器工程和ML的经验(通过域名通过产品的研究),我们开发了一种经过验证的机器学习开发和部署的系统工程方法。我们的“机器学习技术准备水平”(MLTRL)框架定义了一个原则的过程,以确保强大,可靠和负责的系统,同时为ML工作流程流线型,包括来自传统软件工程的关键区别。 MLTRL甚至更多,MLTRL为跨团队和组织的人们定义了一个人工智能和机器学习技术的人员。在这里,我们描述了通过生产化和部署在医学诊断,消费者计算机视觉,卫星图像和粒子物理学等领域,以通过生产和部署在基本研究中开发ML方法的几个现实世界使用情况的框架和阐明。
translated by 谷歌翻译
深度神经网络在人类分析中已经普遍存在,增强了应用的性能,例如生物识别识别,动作识别以及人重新识别。但是,此类网络的性能通过可用的培训数据缩放。在人类分析中,对大规模数据集的需求构成了严重的挑战,因为数据收集乏味,廉价,昂贵,并且必须遵守数据保护法。当前的研究研究了\ textit {合成数据}的生成,作为在现场收集真实数据的有效且具有隐私性的替代方案。这项调查介绍了基本定义和方法,在生成和采用合成数据进行人类分析时必不可少。我们进行了一项调查,总结了当前的最新方法以及使用合成数据的主要好处。我们还提供了公开可用的合成数据集和生成模型的概述。最后,我们讨论了该领域的局限性以及开放研究问题。这项调查旨在为人类分析领域的研究人员和从业人员提供。
translated by 谷歌翻译
The literature on fraud analytics and fraud detection has seen a substantial increase in output in the past decade. This has led to a wide range of research topics and overall little organization of the many aspects of fraud analytical research. The focus of academics ranges from identifying fraudulent credit card payments to spotting illegitimate insurance claims. In addition, there is a wide range of methods and research objectives. This paper aims to provide an overview of fraud analytics in research and aims to more narrowly organize the discipline and its many subfields. We analyze a sample of almost 300 records on fraud analytics published between 2011 and 2020. In a systematic way, we identify the most prominent domains of application, challenges faced, performance metrics, and methods used. In addition, we build a framework for fraud analytical methods and propose a keywording strategy for future research. One of the key challenges in fraud analytics is access to public datasets. To further aid the community, we provide eight requirements for suitable data sets in research motivated by our research. We structure our sample of the literature in an online database. The database is available online for fellow researchers to investigate and potentially build upon.
translated by 谷歌翻译
这项调查旨在全面概述用户与推荐系统之间的相互作用和M&S应用程序之间的相互作用的最新趋势(M&S),以改善工业推荐引擎的性能。我们从实施模拟器的框架开发的动机开始,以及它们用于培训和测试不同类型(包括强化学习)的推荐系统的使用。此外,我们根据现有模拟器的功能,认可和工业有效性提供了新的一致分类,并总结了研究文献中发现的模拟器。除其他事情外,我们还讨论了模拟器的构建块:合成数据(用户,项目,用户项目响应)的生成,用于模拟质量评估的方法和数据集(包括监视的方法)和/或关闭可能的模拟到现实差距),以及用于汇总实验仿真结果的方法。最后,这项调查考虑了该领域的新主题和开放问题。
translated by 谷歌翻译
Recommender systems can strongly influence which information we see online, e.g., on social media, and thus impact our beliefs, decisions, and actions. At the same time, these systems can create substantial business value for different stakeholders. Given the growing potential impact of such AI-based systems on individuals, organizations, and society, questions of fairness have gained increased attention in recent years. However, research on fairness in recommender systems is still a developing area. In this survey, we first review the fundamental concepts and notions of fairness that were put forward in the area in the recent past. Afterward, through a review of more than 150 scholarly publications, we present an overview of how research in this field is currently operationalized, e.g., in terms of general research methodology, fairness measures, and algorithmic approaches. Overall, our analysis of recent works points to specific research gaps. In particular, we find that in many research works in computer science, very abstract problem operationalizations are prevalent, and questions of the underlying normative claims and what represents a fair recommendation in the context of a given application are often not discussed in depth. These observations call for more interdisciplinary research to address fairness in recommendation in a more comprehensive and impactful manner.
translated by 谷歌翻译
In this chapter, we review and discuss the transformation of AI technology in HCI/UX work and assess how AI technology will change how we do the work. We first discuss how AI can be used to enhance the result of user research and design evaluation. We then discuss how AI technology can be used to enhance HCI/UX design. Finally, we discuss how AI-enabled capabilities can improve UX when users interact with computing systems, applications, and services.
translated by 谷歌翻译
评估能源转型和能源市场自由化对资源充足性的影响是一种越来越重要和苛刻的任务。能量系统的上升复杂性需要足够的能量系统建模方法,从而提高计算要求。此外,随着复杂性,同样调用概率评估和场景分析同样增加不确定性。为了充分和高效地解决这些各种要求,需要来自数据科学领域的新方法来加速当前方法。通过我们的系统文献综述,我们希望缩小三个学科之间的差距(1)电力供应安全性评估,(2)人工智能和(3)实验设计。为此,我们对所选应用领域进行大规模的定量审查,并制作彼此不同学科的合成。在其他发现之外,我们使用基于AI的方法和应用程序的AI方法和应用来确定电力供应模型的复杂安全性的元素,并作为未充分涵盖的应用领域的储存调度和(非)可用性。我们结束了推出了一种新的方法管道,以便在评估电力供应安全评估时充分有效地解决当前和即将到来的挑战。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
背景:机器学习(ML)可以实现有效的自动测试生成。目的:我们表征了新兴研究,检查测试实践,研究人员目标,应用的ML技术,评估和挑战。方法:我们对97个出版物的样本进行系统文献综述。结果:ML生成系统,GUI,单位,性能和组合测试的输入或改善现有生成方法的性能。 ML还用于生成测试判决,基于属性的和预期的输出序列。经常基于神经网络和强化学习的监督学习通常是基于Q学习的 - 很普遍,并且某些出版物还采用了无监督或半监督的学习。使用传统的测试指标和与ML相关的指标(例如准确性)评估(半/非 - )监督方法,而经常使用与奖励功能相关的测试指标来评估强化学习。结论:工作到尽头表现出巨大的希望,但是在培训数据,再探术,可伸缩性,评估复杂性,所采用的ML算法以及如何应用 - 基准和可复制性方面存在公开挑战。我们的发现可以作为该领域研究人员的路线图和灵感。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
随着深度学习生成模型的最新进展,它在时间序列领域的出色表现并没有花费很长时间。用于与时间序列合作的深度神经网络在很大程度上取决于培训中使用的数据集的广度和一致性。这些类型的特征通常在现实世界中不丰富,在现实世界中,它们通常受到限制,并且通常具有必须保证的隐私限制。因此,一种有效的方法是通过添加噪声或排列并生成新的合成数据来使用\ gls {da}技术增加数据数。它正在系统地审查该领域的当前最新技术,以概述所有可用的算法,并提出对最相关研究的分类法。将评估不同变体的效率;作为过程的重要组成部分,将分析评估性能的不同指标以及有关每个模型的主要问题。这项研究的最终目的是摘要摘要,这些领域的进化和性能会产生更好的结果,以指导该领域的未来研究人员。
translated by 谷歌翻译