自动驾驶已经取得了很大进展,并在实际使用一步一步上引入。另一方面,个人移动性的概念也受欢迎,它专门为各个驱动程序的自主驾驶是一个新的步骤。然而,难以收集大型驾驶数据集,这基本上需要自主驾驶的学习,从个人移动性的各个驾驶员。此外,当驾驶员不熟悉个人移动性的操作时,数据集将包含非最佳数据。因此,本研究专注于为个人移动性的自主驱动方法,具有如此小而嘈杂,所谓的个人数据集。具体而言,我们基于TSAllis统计数据引入了一个新的损失函数,即权重梯度根据原始损耗功能,并允许我们在优化阶段排除嘈杂的数据。此外,我们改进了可视化技术,以验证驾驶员和控制器是否具有相同的感兴趣区域。从实验结果来看,我们发现传统的自主行驶由于个人数据集中的错误操作而无法正常驱动,并且感兴趣的区域与驾驶员的行为不同。相比之下,所提出的方法稳健地学习违反错误,并在将相似的区域注入到驱动程序时自动启动。附加视频也上传了YouTube:https://youtu.be/keq8-boxyqa
translated by 谷歌翻译
从高维观测数据中提取低维潜在空间对于在提取的潜在空间上构建具有世界模型的实时机器人控制器至关重要。但是,没有建立的方法可以自动调整潜在空间的尺寸,因为它发现了必要和充分的尺寸大小,即世界模型的最小实现。在这项研究中,我们分析并改善了基于Tsallis的变异自动编码器(Q-VAE),并揭示,在适当的配置下,它始终有助于使潜在空间稀疏。即使与最小的实现相比,预先指定的潜在空间的尺寸是多余的,这种稀疏也会崩溃不必要的尺寸,从而易于删除它们。我们通过提出的方法在实验中验证了稀疏性的好处,它可以轻松地使用需要六维状态空间的移动操纵器找到必要和足够的六个维度。此外,通过在提取的维度中学习的最低实现世界模型的计划,该提出的方法能够实时发挥最佳的动作序列,从而将达到的成就时间降低了约20%。随附的视频已上传到YouTube:https://youtu.be/-qjitrnxars上
translated by 谷歌翻译
Sampling-based model predictive control (MPC) can be applied to versatile robotic systems. However, the real-time control with it is a big challenge due to its unstable updates and poor convergence. This paper tackles this challenge with a novel derivation from reverse Kullback-Leibler divergence, which has a mode-seeking behavior and is likely to find one of the sub-optimal solutions early. With this derivation, a weighted maximum likelihood estimation with positive/negative weights is obtained, solving by mirror descent (MD) algorithm. While the negative weights eliminate unnecessary actions, that requires to develop a practical implementation that avoids the interference with positive/negative updates based on rejection sampling. In addition, although the convergence of MD can be accelerated with Nesterov's acceleration method, it is modified for the proposed MPC with a heuristic of a step size adaptive to the noise estimated in update amounts. In the real-time simulations, the proposed method can solve more tasks statistically than the conventional method and accomplish more complex tasks only with a CPU due to the improved acceleration. In addition, its applicability is also demonstrated in a variable impedance control of a force-driven mobile robot. https://youtu.be/D8bFMzct1XM
translated by 谷歌翻译
This paper introduces a novel method of adding intrinsic bonuses to task-oriented reward function in order to efficiently facilitate reinforcement learning search. While various bonuses have been designed to date, they are analogous to the depth-first and breadth-first search algorithms in graph theory. This paper, therefore, first designs two bonuses for each of them. Then, a heuristic gain scheduling is applied to the designed bonuses, inspired by the iterative deepening search, which is known to inherit the advantages of the two search algorithms. The proposed method is expected to allow agent to efficiently reach the best solution in deeper states by gradually exploring unknown states. In three locomotion tasks with dense rewards and three simple tasks with sparse rewards, it is shown that the two types of bonuses contribute to the performance improvement of the different tasks complementarily. In addition, by combining them with the proposed gain scheduling, all tasks can be accomplished with high performance.
translated by 谷歌翻译
自动驾驶汽车和自主驾驶研究一直受到现代人工智能应用中主要有希望的前景。根据先进的驾驶员辅助系统(ADAS)的演变,自动驾驶车辆和自主驱动系统的设计变得复杂和安全至关重要。通常,智能系统同时和有效地激活ADAS功能。因此,必须考虑可靠的ADAS功能协调,安全地控制驱动系统。为了处理这个问题,本文提出了一种随机的对抗性模仿学习(RAIL)算法。铁路是一种新的无衍生仿制学习方法,用于具有各种ADAS功能协调的自主驾驶;因此,它模仿决策者的运作,可以使用各种ADAS功能控制自动驾驶。该方法能够培训涉及激光雷达数据的决策者,并控制多车道复合道环境中的自主驾驶。基于仿真的评估验证了所提出的方法实现了所需的性能。
translated by 谷歌翻译
基于生成的对抗网络用于模仿学习的方法是有希望的,因为它们在专家演示方面是有效的样本。但是,培训生成器需要与实际环境进行许多交互,因为采用了无模型的强化学习来更新策略。为了使用基于模型的增强学习提高样品效率,我们在熵调控的马尔可夫决策过程中提出了基于模型的熵调查模仿学习(MB-eril),以减少与实际环境的相互作用数量。 MB-eril使用两个歧视因子。策略歧视者将机器人与专家的动作区分开来,模型歧视者区分了由模型产生的反事实状态转变与实际模型的转变。我们得出结构化的歧视者,以便学习政策和模型是有效的。计算机模拟和实际机器人实验表明,与基线方法相比,MB-eril实现了竞争性能,并显着提高了样品效率。
translated by 谷歌翻译
模仿学习是一种广泛使用的政策学习方法,它使智能代理能够从专家演示中获取复杂的技能。模仿学习算法的输入通常由当前的观察和历史观察组成,因为最近的观察结果可能不含足够的信息。图像观察尤其是这种情况,其中单个图像仅包含场景的一个视图,并且缺乏运动信息和对象阻塞。从理论上讲,为模仿学习代理提供多个观察将带来更好的性能。然而,令人惊讶的是,人们发现有时从观察史中模仿的表现比最近的观察结果差。在本文中,我们从神经网络角度的信息流中解释了这种现象。我们还提出了一种新颖的模仿学习神经网络体系结构,该架构不会因设计而遭受这个问题的困扰。此外,我们的方法缩放到高维图像观测值。最后,我们对两个广泛使用的模拟器Carla和Mujoco进行了基准测试,它成功地减轻了模仿问题并超过了现有的解决方案。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
这里,我们提出了一种新方法,在没有任何额外的平滑算法的模型预测路径积分控制(MPPI)任务中产生平滑控制序列。我们的方法有效地减轻了抽样中的喋喋不休,而MPPI的信息定位仍然是相同的。我们展示了具有不同算法的定量评估的挑战性自主驾驶任务中的提出方法。还提出了一种用于估算不同道路摩擦条件下的系统动态的神经网络车辆模型。我们的视频可以找到:\ url {https://youtu.be/o3nmi0ujfqg}。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
深度加强学习(DRL)是教授机器人执行复杂任务的有希望的方法。因为直接重用所存储的体验数据的方法无法遵循与时变环境中的机器人问题的环境的变化,所需的在线DRL。资格迹线方法是一种用于提高传统增强学习中的样本效率的在线学习技术,而不是线性回归而不是DRL。深度神经网络参数之间的依赖性会破坏资格迹线,这就是它们不与DRL集成的原因。虽然用最具影响力的梯度替换渐变而不是累积梯度,但随着资格迹线可以缓解这个问题,替换操作会减少先前体验的重用率。为了解决这些问题,本研究提出了一种新的资格迹线方法,即使在DRL中也可以使用,同时保持高样本效率。当累积梯度与使用最新参数计算的梯度不同时,所提出的方法考虑了过去和最新参数之间的发散,以便自适应地衰减资格迹线。由于过去和最新参数之间的发散不可行的计算成本,利用了过去和最新参数的输出之间的Bregman分歧。另外,第一次设计具有多个时间尺度迹线的广义方法。这种设计允许更换最有影响力的自适应积累(衰减)的资格痕迹。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
Humans demonstrate a variety of interesting behavioral characteristics when performing tasks, such as selecting between seemingly equivalent optimal actions, performing recovery actions when deviating from the optimal trajectory, or moderating actions in response to sensed risks. However, imitation learning, which attempts to teach robots to perform these same tasks from observations of human demonstrations, often fails to capture such behavior. Specifically, commonly used learning algorithms embody inherent contradictions between the learning assumptions (e.g., single optimal action) and actual human behavior (e.g., multiple optimal actions), thereby limiting robot generalizability, applicability, and demonstration feasibility. To address this, this paper proposes designing imitation learning algorithms with a focus on utilizing human behavioral characteristics, thereby embodying principles for capturing and exploiting actual demonstrator behavioral characteristics. This paper presents the first imitation learning framework, Bayesian Disturbance Injection (BDI), that typifies human behavioral characteristics by incorporating model flexibility, robustification, and risk sensitivity. Bayesian inference is used to learn flexible non-parametric multi-action policies, while simultaneously robustifying policies by injecting risk-sensitive disturbances to induce human recovery action and ensuring demonstration feasibility. Our method is evaluated through risk-sensitive simulations and real-robot experiments (e.g., table-sweep task, shaft-reach task and shaft-insertion task) using the UR5e 6-DOF robotic arm, to demonstrate the improved characterisation of behavior. Results show significant improvement in task performance, through improved flexibility, robustness as well as demonstration feasibility.
translated by 谷歌翻译
In this thesis, we consider two simple but typical control problems and apply deep reinforcement learning to them, i.e., to cool and control a particle which is subject to continuous position measurement in a one-dimensional quadratic potential or in a quartic potential. We compare the performance of reinforcement learning control and conventional control strategies on the two problems, and show that the reinforcement learning achieves a performance comparable to the optimal control for the quadratic case, and outperforms conventional control strategies for the quartic case for which the optimal control strategy is unknown. To our knowledge, this is the first time deep reinforcement learning is applied to quantum control problems in continuous real space. Our research demonstrates that deep reinforcement learning can be used to control a stochastic quantum system in real space effectively as a measurement-feedback closed-loop controller, and our research also shows the ability of AI to discover new control strategies and properties of the quantum systems that are not well understood, and we can gain insights into these problems by learning from the AI, which opens up a new regime for scientific research.
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
逆强化学习(IRL)试图推断出一种成本函数,以解释专家演示的基本目标和偏好。本文介绍了向后的地平线逆增强学习(RHIRL),这是一种新的IRL算法,用于具有黑盒动态模型的高维,嘈杂,连续的系统。 Rhirl解决了IRL的两个主要挑战:可伸缩性和鲁棒性。为了处理高维的连续系统,Rhirl以退缩的地平线方式与当地的专家演示相匹配,并将其“针迹”一起“缝制”本地解决方案以学习成本;因此,它避免了“维度的诅咒”。这与早期的算法形成鲜明对比,这些算法与在整个高维状态空间中与全球范围内的专家示威相匹配。为了与不完美的专家示范和系统控制噪声保持强大的态度,Rhirl在轻度条件下学习了与系统动力学的状态依赖性成本函数。基准任务的实验表明,在大多数情况下,Rhirl的表现都优于几种领先的IRL算法。我们还证明,Rhirl的累积误差随任务持续时间线性增长。
translated by 谷歌翻译
Kullback-Leibler(KL)差异广泛用于贝叶斯神经网络(BNNS)的变异推理。然而,KL差异具有无限性和不对称性等局限性。我们检查了更通用,有限和对称的詹森 - 香农(JS)差异。我们根据几何JS差异为BNN制定新的损失函数,并表明基于KL差异的常规损失函数是其特殊情况。我们以封闭形式的高斯先验评估拟议损失函数的差异部分。对于任何其他一般的先验,都可以使用蒙特卡洛近似值。我们提供了实施这两种情况的算法。我们证明所提出的损失函数提供了一个可以调整的附加参数,以控制正则化程度。我们得出了所提出的损失函数在高斯先验和后代的基于KL差异的损失函数更好的条件。我们证明了基于嘈杂的CIFAR数据集和有偏见的组织病理学数据集的最新基于KL差异的BNN的性能提高。
translated by 谷歌翻译
为了确保用户接受自动驾驶汽车(AVS),正在开发控制系统以模仿人类驾驶员的驾驶行为。模仿学习(IL)算法达到了这个目的,但努力为由此产生的闭环系统轨迹提供安全保证。另一方面,模型预测控制(MPC)可以处理具有安全限制的非线性系统,但是用它来实现类似人类的驾驶需要广泛的域知识。这项工作表明,通过将MPC用作分层IL策略中的可区分控制层,将两种技术的无缝组合从所需驾驶行为的演示中学习安全的AV控制器。通过此策略,IL通过MPC成本,模型或约束的参数在闭环和端到端进行。鉴于人类在固定基准驾驶模拟器上进行了示范,分析了通过行为克隆(BCO)来学习的该方法的实验结果,用于通过行为克隆(BCO)学习的车道控制系统的设计。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
灵活的目标指导行为是人类生活的一个基本方面。基于自由能最小化原理,主动推断理论从计算神经科学的角度正式产生了这种行为。基于该理论,我们介绍了一个输出型,时间预测的,模块化的人工神经网络体系结构,该建筑处理感觉运动信息,渗透到世界上与行为相关的方面,并引起高度灵活的,目标定向的行为。我们表明,我们的建筑经过端对端训练,以最大程度地减少自由能的近似值,它会发展出可以将其解释为负担能力地图的潜在状态。也就是说,新兴的潜在状态表明哪种行动导致哪些效果取决于局部环境。结合主动推断,我们表明可以调用灵活的目标指导行为,并结合新兴的负担能力图。结果,我们的模拟代理会在连续的空间中灵活地转向,避免与障碍物发生碰撞,并且更喜欢高确定性地导致目标的途径。此外,我们表明,学识渊博的代理非常适合跨环境的零拍概括:在训练少数固定环境中的代理商在具有障碍和其他影响其行为的固定环境中,它在程序生成的环境中表现出色,其中包含不同量的环境不同位置的各种尺寸的障碍和地形。
translated by 谷歌翻译