在本文中,我们研究了实用的时空视频超分辨率(STVSR)问题,该问题旨在从低型低分辨率的低分辨率模糊视频中生成高富含高分辨率的夏普视频。当使用低填充和低分辨率摄像头记录快速动态事件时,通常会发生这种问题,而被捕获的视频将遭受三个典型问题:i)运动模糊发生是由于曝光时间内的对象/摄像机运动而发生的; ii)当事件时间频率超过时间采样的奈奎斯特极限时,运动异叠是不可避免的; iii)由于空间采样率低,因此丢失了高频细节。这些问题可以通过三个单独的子任务的级联来缓解,包括视频脱张,框架插值和超分辨率,但是,这些问题将无法捕获视频序列之间的空间和时间相关性。为了解决这个问题,我们通过利用基于模型的方法和基于学习的方法来提出一个可解释的STVSR框架。具体而言,我们将STVSR作为联合视频脱张,框架插值和超分辨率问题,并以另一种方式将其作为两个子问题解决。对于第一个子问题,我们得出了可解释的分析解决方案,并将其用作傅立叶数据变换层。然后,我们为第二个子问题提出了一个反复的视频增强层,以进一步恢复高频细节。广泛的实验证明了我们方法在定量指标和视觉质量方面的优势。
translated by 谷歌翻译
现有的视频denoising方法通常假设嘈杂的视频通过添加高斯噪声从干净的视频中降低。但是,经过这种降解假设训练的深层模型将不可避免地导致由于退化不匹配而导致的真实视频的性能差。尽管一些研究试图在摄像机捕获的嘈杂和无噪声视频对上训练深层模型,但此类模型只能对特定的相机很好地工作,并且对其他视频的推广不佳。在本文中,我们建议提高此限制,并专注于一般真实视频的问题,目的是在看不见的现实世界视频上概括。我们首先调查视频噪音的共同行为来解决这个问题,并观察两个重要特征:1)缩减有助于降低空间空间中的噪声水平; 2)来自相邻框架的信息有助于消除时间上的当前框架的噪声空间。在这两个观察结果的推动下,我们通过充分利用上述两个特征提出了多尺度的复发架构。其次,我们通过随机调整不同的噪声类型来训练Denoising模型来提出合成真实的噪声降解模型。借助合成和丰富的降解空间,我们的退化模型可以帮助弥合训练数据和现实世界数据之间的分布差距。广泛的实验表明,与现有方法相比,我们所提出的方法实现了最先进的性能和更好的概括能力,而在合成高斯denoising和实用的真实视频denoisising方面都具有现有方法。
translated by 谷歌翻译
Video Super-Resolution (VSR) aims to restore high-resolution (HR) videos from low-resolution (LR) videos. Existing VSR techniques usually recover HR frames by extracting pertinent textures from nearby frames with known degradation processes. Despite significant progress, grand challenges are remained to effectively extract and transmit high-quality textures from high-degraded low-quality sequences, such as blur, additive noises, and compression artifacts. In this work, a novel Frequency-Transformer (FTVSR) is proposed for handling low-quality videos that carry out self-attention in a combined space-time-frequency domain. First, video frames are split into patches and each patch is transformed into spectral maps in which each channel represents a frequency band. It permits a fine-grained self-attention on each frequency band, so that real visual texture can be distinguished from artifacts. Second, a novel dual frequency attention (DFA) mechanism is proposed to capture the global frequency relations and local frequency relations, which can handle different complicated degradation processes in real-world scenarios. Third, we explore different self-attention schemes for video processing in the frequency domain and discover that a ``divided attention'' which conducts a joint space-frequency attention before applying temporal-frequency attention, leads to the best video enhancement quality. Extensive experiments on three widely-used VSR datasets show that FTVSR outperforms state-of-the-art methods on different low-quality videos with clear visual margins. Code and pre-trained models are available at https://github.com/researchmm/FTVSR.
translated by 谷歌翻译
视频修复(例如,视频超分辨率)旨在从低品质框架中恢复高质量的帧。与单图像恢复不同,视频修复通常需要从多个相邻但通常未对准视频帧的时间信息。现有的深度方法通常通过利用滑动窗口策略或经常性体系结构来解决此问题,该策略要么受逐帧恢复的限制,要么缺乏远程建模能力。在本文中,我们提出了一个带有平行框架预测和远程时间依赖性建模能力的视频恢复变压器(VRT)。更具体地说,VRT由多个量表组成,每个量表由两种模块组成:时间相互注意(TMSA)和平行翘曲。 TMSA将视频分为小剪辑,将相互关注用于关节运动估计,特征对齐和特征融合,而自我注意力则用于特征提取。为了启用交叉交互,视频序列对其他每一层都发生了变化。此外,通过并行功能翘曲,并行翘曲用于进一步从相邻帧中融合信息。有关五项任务的实验结果,包括视频超分辨率,视频脱张,视频denoising,视频框架插值和时空视频超级分辨率,证明VRT优于大幅度的最先进方法($ \ textbf) {最高2.16db} $)在十四个基准数据集上。
translated by 谷歌翻译
时空视频超分辨率(STVSR)的目标是增加低分辨率(LR)和低帧速率(LFR)视频的空间分辨率。基于深度学习的最新方法已取得了重大改进,但是其中大多数仅使用两个相邻帧,即短期功能,可以合成缺失的框架嵌入,这无法完全探索连续输入LR帧的信息流。此外,现有的STVSR模型几乎无法明确利用时间上下文以帮助高分辨率(HR)框架重建。为了解决这些问题,在本文中,我们提出了一个称为STDAN的可变形注意网络。首先,我们设计了一个长短的术语特征插值(LSTFI)模块,该模块能够通过双向RNN结构从更相邻的输入帧中挖掘大量的内容,以进行插值。其次,我们提出了一个空间 - 周期性变形特征聚合(STDFA)模块,其中动态视频框架中的空间和时间上下文被自适应地捕获并汇总以增强SR重建。几个数据集的实验结果表明,我们的方法的表现优于最先进的STVSR方法。该代码可在https://github.com/littlewhitesea/stdan上找到。
translated by 谷歌翻译
时空视频超分辨率(STVSR)旨在从相应的低帧速率,低分辨率视频序列构建高空时间分辨率视频序列。灵感来自最近的成功,考虑空间时间超级分辨率的空间信息,我们在这项工作中的主要目标是在快速动态事件的视频序列中充分考虑空间和时间相关性。为此,我们提出了一种新颖的单级内存增强图注意网络(Megan),用于时空视频超分辨率。具体地,我们构建新颖的远程存储图聚合(LMGA)模块,以沿着特征映射的信道尺寸动态捕获相关性,并自适应地聚合信道特征以增强特征表示。我们介绍了一个非本地剩余块,其使每个通道明智的功能能够参加全局空间分层特征。此外,我们采用渐进式融合模块通过广泛利用来自多个帧的空间 - 时间相关性来进一步提高表示能力。实验结果表明,我们的方法与定量和视觉上的最先进的方法相比,实现了更好的结果。
translated by 谷歌翻译
突发超级分辨率(SR)提供了从低质量图像恢复丰富细节的可能性。然而,由于实际应用中的低分辨率(LR)图像具有多种复杂和未知的降级,所以现有的非盲(例如,双臂)设计的网络通常导致恢复高分辨率(HR)图像的严重性能下降。此外,处理多重未对准的嘈杂的原始输入也是具有挑战性的。在本文中,我们解决了从现代手持设备获取的原始突发序列重建HR图像的问题。中央观点是一个内核引导策略,可以用两个步骤解决突发SR:内核建模和HR恢复。前者估计来自原始输入的突发内核,而后者基于估计的内核预测超分辨图像。此外,我们引入了内核感知可变形对准模块,其可以通过考虑模糊的前沿而有效地对准原始图像。对综合和现实世界数据集的广泛实验表明,所提出的方法可以在爆发SR问题中对最先进的性能进行。
translated by 谷歌翻译
Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects:(1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.
translated by 谷歌翻译
Video super-resolution (VSR) aiming to reconstruct a high-resolution (HR) video from its low-resolution (LR) counterpart has made tremendous progress in recent years. However, it remains challenging to deploy existing VSR methods to real-world data with complex degradations. On the one hand, there are few well-aligned real-world VSR datasets, especially with large super-resolution scale factors, which limits the development of real-world VSR tasks. On the other hand, alignment algorithms in existing VSR methods perform poorly for real-world videos, leading to unsatisfactory results. As an attempt to address the aforementioned issues, we build a real-world 4 VSR dataset, namely MVSR4$\times$, where low- and high-resolution videos are captured with different focal length lenses of a smartphone, respectively. Moreover, we propose an effective alignment method for real-world VSR, namely EAVSR. EAVSR takes the proposed multi-layer adaptive spatial transform network (MultiAdaSTN) to refine the offsets provided by the pre-trained optical flow estimation network. Experimental results on RealVSR and MVSR4$\times$ datasets show the effectiveness and practicality of our method, and we achieve state-of-the-art performance in real-world VSR task. The dataset and code will be publicly available.
translated by 谷歌翻译
压缩视频超分辨率(VSR)旨在从压缩的低分辨率对应物中恢复高分辨率帧。最近的VSR方法通常通过借用相邻视频帧的相关纹理来增强输入框架。尽管已经取得了一些进展,但是从压缩视频中有效提取和转移高质量纹理的巨大挑战,这些视频通常会高度退化。在本文中,我们提出了一种用于压缩视频超分辨率(FTVSR)的新型频率转换器,该频率在联合时空频域中进行自我注意。首先,我们将视频框架分为斑块,然后将每个贴片转换为DCT光谱图,每个通道代表频带。这样的设计使每个频带都可以进行细粒度的自我注意力,因此可以将真实的视觉纹理与伪影区分开,并进一步用于视频框架修复。其次,我们研究了不同的自我发场方案,并发现在对每个频带上应用暂时关注之前,会引起关节空间的注意力,从而带来最佳的视频增强质量。两个广泛使用的视频超分辨率基准的实验结果表明,FTVSR在未压缩和压缩视频的最先进的方法中都具有清晰的视觉边距。代码可在https://github.com/researchmm/ftvsr上找到。
translated by 谷歌翻译
不同于单图像超分辨率(SISR)任务,视频超分辨率(VSR)任务的键是在帧中充分利用互补信息来重建高分辨率序列。由于来自不同帧的图像具有不同的运动和场景,因此精确地对准多个帧并有效地融合不同的帧,这始终是VSR任务的关键研究工作。为了利用邻近框架的丰富互补信息,在本文中,我们提出了一种多级VSR深度架构,称为PP-MSVSR,局部融合模块,辅助损耗和重新对准模块,以逐步改进增强率。具体地,为了加强特征传播中帧的特征的融合,在阶段-1中设计了局部融合模块,以在特征传播之前执行局部特征融合。此外,我们在阶段-2中引入辅助损耗,使得通过传播模块获得的特征储备更多相关的信息连接到HR空间,并在阶段-3中引入重新对准模块以充分利用该特征信息前一阶段。广泛的实验证实,PP-MSVSR实现了VID4数据集的有希望的性能,其实现了28.13dB的PSNR,仅具有1.45米的参数。并且PP-MSVSR-L具有相当大的参数的REDS4数据集上的所有状态。代码和模型将在Paddlegan \脚注{https://github.com/paddlepaddle/paddlegan。}。
translated by 谷歌翻译
尽管目前基于深度学习的方法在盲目的单图像超分辨率(SISR)任务中已获得了有希望的表现,但其中大多数主要集中在启发式上构建多样化的网络体系结构,并更少强调对Blur之间的物理发电机制的明确嵌入内核和高分辨率(HR)图像。为了减轻这个问题,我们提出了一个模型驱动的深神经网络,称为blind SISR。具体而言,为了解决经典的SISR模型,我们提出了一种简单的效果迭代算法。然后,通过将所涉及的迭代步骤展开到相应的网络模块中,我们自然构建了KXNET。所提出的KXNET的主要特异性是整个学习过程与此SISR任务的固有物理机制完全合理地集成在一起。因此,学习的模糊内核具有清晰的物理模式,并且模糊内核和HR图像之间的相互迭代过程可以很好地指导KXNET沿正确的方向发展。关于合成和真实数据的广泛实验很好地证明了我们方法的卓越准确性和一般性超出了当前代表性的最先进的盲目SISR方法。代码可在:\ url {https://github.com/jiahong-fu/kxnet}中获得。
translated by 谷歌翻译
本文研究了动画视频的现实世界视频超分辨率(VSR)的问题,并揭示了实用动画VSR的三个关键改进。首先,最近的现实世界超分辨率方法通常依赖于使用基本运算符的降解模拟,而没有任何学习能力,例如模糊,噪声和压缩。在这项工作中,我们建议从真正的低质量动画视频中学习此类基本操作员,并将学习的操作员纳入降级生成管道中。这样的基于神经网络的基本操作员可以帮助更好地捕获实际降解的分布。其次,大规模的高质量动画视频数据集AVC构建,以促进动画VSR的全面培训和评估。第三,我们进一步研究了有效的多尺度网络结构。它利用单向复发网络的效率以及基于滑动窗口的方法的有效性。多亏了上述精致的设计,我们的方法Animesr能够有效,有效地恢复现实世界中的低质量动画视频,从而实现优于以前的最先进方法。
translated by 谷歌翻译
Convolutional Neural Network (CNN)-based image super-resolution (SR) has exhibited impressive success on known degraded low-resolution (LR) images. However, this type of approach is hard to hold its performance in practical scenarios when the degradation process is unknown. Despite existing blind SR methods proposed to solve this problem using blur kernel estimation, the perceptual quality and reconstruction accuracy are still unsatisfactory. In this paper, we analyze the degradation of a high-resolution (HR) image from image intrinsic components according to a degradation-based formulation model. We propose a components decomposition and co-optimization network (CDCN) for blind SR. Firstly, CDCN decomposes the input LR image into structure and detail components in feature space. Then, the mutual collaboration block (MCB) is presented to exploit the relationship between both two components. In this way, the detail component can provide informative features to enrich the structural context and the structure component can carry structural context for better detail revealing via a mutual complementary manner. After that, we present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process. Finally, a multi-scale fusion module followed by an upsampling layer is designed to fuse the structure and detail features and perform SR reconstruction. Empowered by such degradation-based components decomposition, collaboration, and mutual optimization, we can bridge the correlation between component learning and degradation modelling for blind SR, thereby producing SR results with more accurate textures. Extensive experiments on both synthetic SR datasets and real-world images show that the proposed method achieves the state-of-the-art performance compared to existing methods.
translated by 谷歌翻译
Existing convolutional neural networks (CNN) based image super-resolution (SR) methods have achieved impressive performance on bicubic kernel, which is not valid to handle unknown degradations in real-world applications. Recent blind SR methods suggest to reconstruct SR images relying on blur kernel estimation. However, their results still remain visible artifacts and detail distortion due to the estimation errors. To alleviate these problems, in this paper, we propose an effective and kernel-free network, namely DSSR, which enables recurrent detail-structure alternative optimization without blur kernel prior incorporation for blind SR. Specifically, in our DSSR, a detail-structure modulation module (DSMM) is built to exploit the interaction and collaboration of image details and structures. The DSMM consists of two components: a detail restoration unit (DRU) and a structure modulation unit (SMU). The former aims at regressing the intermediate HR detail reconstruction from LR structural contexts, and the latter performs structural contexts modulation conditioned on the learned detail maps at both HR and LR spaces. Besides, we use the output of DSMM as the hidden state and design our DSSR architecture from a recurrent convolutional neural network (RCNN) view. In this way, the network can alternatively optimize the image details and structural contexts, achieving co-optimization across time. Moreover, equipped with the recurrent connection, our DSSR allows low- and high-level feature representations complementary by observing previous HR details and contexts at every unrolling time. Extensive experiments on synthetic datasets and real-world images demonstrate that our method achieves the state-of-the-art against existing methods. The source code can be found at https://github.com/Arcananana/DSSR.
translated by 谷歌翻译
远程时间对齐至关重要,但对视频恢复任务有挑战性。最近,一些作品试图将远程对齐分成几个子对齐并逐步处理它们。虽然该操作有助于建模遥控对应关系,但由于传播机制,误差累积是不可避免的。在这项工作中,我们提出了一种新颖的通用迭代对准模块,其采用逐渐改进方案进行子对准,产生更准确的运动补偿。为了进一步提高对准精度和时间一致性,我们开发了一种非参数重新加权方法,其中每个相邻帧的重要性以用于聚合的空间方式自适应地评估。凭借拟议的策略,我们的模型在一系列视频恢复任务中实现了多个基准测试的最先进的性能,包括视频超分辨率,去噪和去束性。我们的项目可用于\ url {https:/github.com/redrock303/revisiting-temporal-alignment-for-video-Restion.git}。
translated by 谷歌翻译
视频修复旨在从多个低质量框架中恢复多个高质量的帧。现有的视频修复方法通常属于两种极端情况,即它们并行恢复所有帧,或者以复发方式恢复视频框架,这将导致不同的优点和缺点。通常,前者具有时间信息融合的优势。但是,它遭受了较大的模型尺寸和密集的内存消耗;后者的模型大小相对较小,因为它在跨帧中共享参数。但是,它缺乏远程依赖建模能力和并行性。在本文中,我们试图通过提出经常性视频恢复变压器(即RVRT)来整合两种情况的优势。 RVRT在全球经常性的框架内并行处理本地相邻框架,该框架可以在模型大小,有效性和效率之间实现良好的权衡。具体而言,RVRT将视频分为多个剪辑,并使用先前推断的剪辑功能来估计后续剪辑功能。在每个剪辑中,通过隐式特征聚合共同更新不同的帧功能。在不同的剪辑中,引导的变形注意力是为剪辑对齐对齐的,该剪辑对齐可预测整个推断的夹子中的多个相关位置,并通过注意机制汇总其特征。关于视频超分辨率,DeBlurring和DeNoising的广泛实验表明,所提出的RVRT在具有平衡模型大小,测试内存和运行时的基准数据集上实现了最先进的性能。
translated by 谷歌翻译
视频帧插值,旨在在视频序列中合成不存在中间帧,是计算机视觉中的重要研究主题。现有的视频帧插值方法在特定假设下实现了显着的结果,例如瞬间或已知的曝光时间。然而,在复杂的真实情况下,视频的时间前锋,即每秒帧(FPS)和帧曝光时间,可能与不同的相机传感器不同。当在从训练中的不同曝光设置下进行测试视频时,内插帧将遭受显着的错位问题。在这项工作中,我们在一般情况下解决了视频帧插值问题,其中可以在不确定的曝光(和间隔)时间下获取输入帧。与以前可以应用于特定时间的方法的方法不同,我们从四个连续的尖锐帧或两个连续的模糊帧中导出一般的曲线运动轨迹公式,没有时间前导者。此外,利用相邻运动轨迹内的约束,我们设计了一种新的光学流细化策略,以获得更好的插值结果。最后,实验表明,一个训练有素的模型足以在复杂的真实情况下合成高质量的慢动作视频。代码可在https://github.com/yjzhang96/uti-vfi上使用。
translated by 谷歌翻译
视频通常将流和连续的视觉数据记录为离散的连续帧。由于存储成本对于高保真度的视频来说是昂贵的,因此大多数存储以相对较低的分辨率和帧速率存储。最新的时空视频超分辨率(STVSR)的工作是开发出来的,以将时间插值和空间超分辨率纳入统一框架。但是,其中大多数仅支持固定的上采样量表,这限制了其灵活性和应用。在这项工作中,我们没有遵循离散表示,我们提出了视频隐式神经表示(videoinr),并显示了其对STVSR的应用。学到的隐式神经表示可以解码为任意空间分辨率和帧速率的视频。我们表明,Videoinr在常见的上采样量表上使用最先进的STVSR方法实现了竞争性能,并且在连续和训练的分布量表上显着优于先前的作品。我们的项目页面位于http://zeyuan-chen.com/videoinr/。
translated by 谷歌翻译
基于常规卷积网络的视频超分辨率(VSR)方法具有很强的视频序列的时间建模能力。然而,在单向反复卷积网络中的不同反复单元接收的输入信息不平衡。早期重建帧接收较少的时间信息,导致模糊或工件效果。虽然双向反复卷积网络可以缓解这个问题,但它大大提高了重建时间和计算复杂性。它也不适用于许多应用方案,例如在线超分辨率。为了解决上述问题,我们提出了一种端到端信息预构建的经常性重建网络(IPRRN),由信息预构建网络(IPNet)和经常性重建网络(RRNET)组成。通过将足够的信息从视频的前面集成来构建初始复发单元所需的隐藏状态,以帮助恢复较早的帧,信息预构建的网络在不向后传播之前和之后的输入信息差异。此外,我们展示了一种紧凑的复发性重建网络,可显着改善恢复质量和时间效率。许多实验已经验证了我们所提出的网络的有效性,并与现有的最先进方法相比,我们的方法可以有效地实现更高的定量和定性评估性能。
translated by 谷歌翻译