我们提出了一种学习神经阴影领域的方法,这些方法是神经场景表示,仅从场景中的阴影中学到。虽然传统的形状 - 从阴影(SFS)算法从阴影重建几何形状,但他们采用固定的扫描设置,无法推广到复杂的场景。另一方面,神经渲染算法依赖于RGB图像之间的光度一致性,但在很大程度上忽略了物理线索,例如阴影,这些暗示已被证明提供了有关场景的宝贵信息。我们观察到,阴影是一种强大的提示,可以限制神经场景表示以学习SF,甚至超越nerf来重建其他隐藏的几何形状。我们提出了一种以图形为灵感的可区分方法,以通过体积渲染来渲染准确的阴影,预测可以将其与地面真相阴影相提并论的阴影图。即使只有二进制阴影图,我们也表明神经渲染可以定位对象并估算粗几何形状。我们的方法表明,图像中的稀疏提示可用于使用可区分的体积渲染来估计几何形状。此外,我们的框架是高度概括的,可以与现有的3D重建技术一起工作,否则仅使用光度一致性。
translated by 谷歌翻译
我们建议使用以光源方向为条件的神经辐射场(NERF)的扩展来解决多视光度立体声问题。我们神经表示的几何部分预测表面正常方向,使我们能够理解局部表面反射率。我们的神经表示的外观部分被分解为神经双向反射率函数(BRDF),作为拟合过程的一部分学习,阴影预测网络(以光源方向为条件),使我们能够对明显的BRDF进行建模。基于物理图像形成模型的诱导偏差的学到的组件平衡使我们能够远离训练期间观察到的光源和查看器方向。我们证明了我们在多视光学立体基准基准上的方法,并表明可以通过NERF的神经密度表示可以获得竞争性能。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们提出了可区分的立体声,这是一种多视图立体方法,可从几乎没有输入视图和嘈杂摄像机中重建形状和纹理。我们将传统的立体定向和现代可区分渲染配对,以构建端到端模型,该模型可以预测具有不同拓扑和形状的物体的纹理3D网眼。我们将立体定向作为优化问题,并通过简单的梯度下降同时更新形状和相机。我们进行了广泛的定量分析,并与传统的多视图立体声技术和基于最先进的学习方法进行比较。我们展示了令人信服的重建,这些重建是在挑战现实世界的场景上,以及具有复杂形状,拓扑和纹理的大量对象类型。项目网页:https://shubham-goel.github.io/ds/
translated by 谷歌翻译
Reflections on glossy objects contain valuable and hidden information about the surrounding environment. By converting these objects into cameras, we can unlock exciting applications, including imaging beyond the camera's field-of-view and from seemingly impossible vantage points, e.g. from reflections on the human eye. However, this task is challenging because reflections depend jointly on object geometry, material properties, the 3D environment, and the observer viewing direction. Our approach converts glossy objects with unknown geometry into radiance-field cameras to image the world from the object's perspective. Our key insight is to convert the object surface into a virtual sensor that captures cast reflections as a 2D projection of the 5D environment radiance field visible to the object. We show that recovering the environment radiance fields enables depth and radiance estimation from the object to its surroundings in addition to beyond field-of-view novel-view synthesis, i.e. rendering of novel views that are only directly-visible to the glossy object present in the scene, but not the observer. Moreover, using the radiance field we can image around occluders caused by close-by objects in the scene. Our method is trained end-to-end on multi-view images of the object and jointly estimates object geometry, diffuse radiance, and the 5D environment radiance field.
translated by 谷歌翻译
神经隐式表面已成为多视图3D重建的重要技术,但它们的准确性仍然有限。在本文中,我们认为这来自难以学习和呈现具有神经网络的高频纹理。因此,我们建议在不同视图中添加标准神经渲染优化直接照片一致性术语。直观地,我们优化隐式几何体,以便以一致的方式扭曲彼此的视图。我们证明,两个元素是这种方法成功的关键:(i)使用沿着每条光线的预测占用和3D点的预测占用和法线来翘曲整个补丁,并用稳健的结构相似度测量它们的相似性; (ii)以这种方式处理可见性和遮挡,使得不正确的扭曲不会给出太多的重要性,同时鼓励重建尽可能完整。我们评估了我们的方法,在标准的DTU和EPFL基准上被称为NeuralWarp,并表明它在两个数据集上以超过20%重建的艺术态度优于未经监督的隐式表面。
translated by 谷歌翻译
尽管通过自学意识到,基于多层感知的方法在形状和颜色恢复方面取得了令人鼓舞的结果,但在学习深层隐式表面表示方面通常会遭受沉重的计算成本。由于渲染每个像素需要一个向前的网络推断,因此合成整个图像是非常密集的。为了应对这些挑战,我们提出了一种有效的粗到精细方法,以从本文中从多视图中恢复纹理网格。具体而言,采用可区分的泊松求解器来表示对象的形状,该求解器能够产生拓扑 - 敏捷和水密表面。为了说明深度信息,我们通过最小化渲染网格与多视图立体声预测深度之间的差异来优化形状几何形状。与形状和颜色的隐式神经表示相反,我们引入了一种基于物理的逆渲染方案,以共同估计环境照明和对象的反射率,该方案能够实时呈现高分辨率图像。重建的网格的质地是从可学习的密集纹理网格中插值的。我们已经对几个多视图立体数据集进行了广泛的实验,其有希望的结果证明了我们提出的方法的功效。该代码可在https://github.com/l1346792580123/diff上找到。
translated by 谷歌翻译
获取房间规模场景的高质量3D重建对于即将到来的AR或VR应用是至关重要的。这些范围从混合现实应用程序进行电话会议,虚拟测量,虚拟房间刨,到机器人应用。虽然使用神经辐射场(NERF)的基于卷的视图合成方法显示有希望再现对象或场景的外观,但它们不会重建实际表面。基于密度的表面的体积表示在使用行进立方体提取表面时导致伪影,因为在优化期间,密度沿着射线累积,并且不在单个样本点处于隔离点。我们建议使用隐式函数(截短的签名距离函数)来代表表面来代表表面。我们展示了如何在NERF框架中纳入此表示,并将其扩展为使用来自商品RGB-D传感器的深度测量,例如Kinect。此外,我们提出了一种姿势和相机细化技术,可提高整体重建质量。相反,与集成NERF的深度前瞻性的并发工作,其专注于新型视图合成,我们的方法能够重建高质量的韵律3D重建。
translated by 谷歌翻译
最近的神经渲染方法通过用神经网络预测体积密度和颜色来证明了准确的视图插值。虽然可以在静态和动态场景上监督这种体积表示,但是现有方法隐含地将完整的场景光传输释放到一个神经网络中,用于给定场景,包括曲面建模,双向散射分布函数和间接照明效果。与传统的渲染管道相比,这禁止在场景中改变表面反射率,照明或构成其他物体。在这项工作中,我们明确地模拟了场景表面之间的光传输,我们依靠传统的集成方案和渲染方程来重建场景。所提出的方法允许BSDF恢复,具有未知的光条件和诸如路径传输的经典光传输。通过在传统渲染方法中建立的表面表示的分解传输,该方法自然促进了编辑形状,反射率,照明和场景组成。该方法优于神经,在已知的照明条件下可发光,并为refit和编辑场景产生现实的重建。我们验证了从综合和捕获的视图上了解的场景编辑,致密和反射率估算的建议方法,并捕获了神经数据集的子集。
translated by 谷歌翻译
这项工作的目标是通过扫描平台捕获的数据进行3D重建和新颖的观看综合,该平台在城市室外环境中常设世界映射(例如,街景)。给定一系列由摄像机和扫描仪通过室外场景的摄像机和扫描仪进行的序列,我们产生可以从中提取3D表面的模型,并且可以合成新颖的RGB图像。我们的方法扩展了神经辐射字段,已经证明了用于在受控设置中的小型场景中的逼真新颖的图像,用于利用异步捕获的LIDAR数据,用于寻址捕获图像之间的曝光变化,以及利用预测的图像分段来监督密度。在光线指向天空。这三个扩展中的每一个都在街道视图数据上的实验中提供了显着的性能改进。我们的系统产生最先进的3D表面重建,并与传统方法(例如〜Colmap)和最近的神经表示(例如〜MIP-NERF)相比,合成更高质量的新颖视图。
translated by 谷歌翻译
在本文中,我们为复杂场景进行了高效且强大的深度学习解决方案。在我们的方法中,3D场景表示为光场,即,一组光线,每组在到达图像平面时具有相应的颜色。对于高效的新颖视图渲染,我们采用了光场的双面参数化,其中每个光线的特征在于4D参数。然后,我们将光场配向作为4D函数,即将4D坐标映射到相应的颜色值。我们训练一个深度完全连接的网络以优化这种隐式功能并记住3D场景。然后,特定于场景的模型用于综合新颖视图。与以前需要密集的视野的方法不同,需要密集的视野采样来可靠地呈现新颖的视图,我们的方法可以通过采样光线来呈现新颖的视图并直接从网络查询每种光线的颜色,从而使高质量的灯场呈现稀疏集合训练图像。网络可以可选地预测每光深度,从而使诸如自动重新焦点的应用。我们的小说视图合成结果与最先进的综合结果相当,甚至在一些具有折射和反射的具有挑战性的场景中优越。我们在保持交互式帧速率和小的内存占地面积的同时实现这一点。
translated by 谷歌翻译
在本文中,我们解决了多视图3D形状重建的问题。尽管最近与隐式形状表示相关的最新可区分渲染方法提供了突破性的表现,但它们仍然在计算上很重,并且在估计的几何形状上通常缺乏精确性。为了克服这些局限性,我们研究了一种基于体积的新型表示形式建立的新计算方法,就像在最近的可区分渲染方法中一样,但是用深度图进行了参数化,以更好地实现形状表面。与此表示相关的形状能量可以评估给定颜色图像的3D几何形状,并且不需要外观预测,但在优化时仍然受益于体积整合。在实践中,我们提出了一个隐式形状表示,SRDF基于签名距离,我们通过沿摄像头射线进行参数化。相关的形状能量考虑了深度预测一致性和光度一致性之间的一致性,这是在体积表示内的3D位置。可以考虑各种照片一致先验的基础基线,或者像学习功能一样详细的标准。该方法保留具有深度图的像素准确性,并且可行。我们对标准数据集进行的实验表明,它提供了有关具有隐式形状表示的最新方法以及传统的多视角立体方法的最新结果。
translated by 谷歌翻译
3D重建是计算机视觉中的一个基本问题,当重建对象被部分或完全遮住时,任务尤其具有挑战性。我们介绍了一种使用未观察到的对象施放的阴影的方法,以推断遮挡背后的3D卷。我们创建一个可区分的图像形成模型,使我们能够共同推断物体的3D形状,其姿势和光源的位置。由于该方法是端到端可区分的,因此我们能够集成对象几何学的学习先验,以生成不同对象类别的现实3D形状。实验和可视化表明该方法能够生成与阴影观察一致的多个可能的解决方案。即使光源和物体姿势的位置都未知,我们的方法也起作用。我们的方法对现实世界的图像也很强,而地面真实的阴影面罩未知。
translated by 谷歌翻译
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, φ)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.
translated by 谷歌翻译
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises. * Work done while Shaohui Liu was an academic guest at ETH Zurich.
translated by 谷歌翻译
https://video-nerf.github.io Figure 1. Our method takes a single casually captured video as input and learns a space-time neural irradiance field. (Top) Sample frames from the input video. (Middle) Novel view images rendered from textured meshes constructed from depth maps. (Bottom) Our results rendered from the proposed space-time neural irradiance field.
translated by 谷歌翻译
新型视图综合的古典光场渲染可以准确地再现视图依赖性效果,例如反射,折射和半透明,但需要一个致密的视图采样的场景。基于几何重建的方法只需要稀疏的视图,但不能准确地模拟非兰伯语的效果。我们介绍了一个模型,它结合了强度并减轻了这两个方向的局限性。通过在光场的四维表示上操作,我们的模型学会准确表示依赖视图效果。通过在训练和推理期间强制执行几何约束,从稀疏的视图集中毫无屏蔽地学习场景几何。具体地,我们介绍了一种基于两级变压器的模型,首先沿着ePipoll线汇总特征,然后沿参考视图聚合特征以产生目标射线的颜色。我们的模型在多个前进和360 {\ DEG}数据集中优于最先进的,具有较大的差别依赖变化的场景更大的边缘。
translated by 谷歌翻译
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel-and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our singleview reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.
translated by 谷歌翻译
Point of View & TimeFigure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances synthesised by the proposed model.
translated by 谷歌翻译
where the highest resolution is required, using facial performance capture as a case in point.
translated by 谷歌翻译