培训和测试数据之间的分布变化通常会破坏深度学习模型的性能。近年来,许多工作都注意存在分布转移的领域泛化(DG),而目标数据看不见。尽管算法设计取得了进展,但长期以来一直忽略了两个基础因素:1)基于正则化的目标(例如,分布对齐)的优化和2)DG的模型选择,因为无法利用有关目标域的知识。在本文中,我们提出了用于域概括的优化和选择技术的混合。为了进行优化,我们利用改编的混音来生成一个分发数据集,该数据集可以指导首选项方向并通过帕累托优化进行优化。对于模型选择,我们生成一个验证数据集,距离目标分布距离更遥远,从而可以更好地表示目标数据。我们还提出了一些理论见解。对一个视觉分类基准和三个时间序列基准的全面实验表明,我们的模型优化和选择技术可以在很大程度上可以改善现有域概括算法的性能,甚至可以取得新的最先进的结果。
translated by 谷歌翻译
在过去的几年中,深度学习取得了巨大的成功。但是,面对非IID情况,深度学习的表现可能会阻碍。域的概括(DG)使模型可以概括为看不见的测试分布,即学习域不变表示。在本文中,我们认为域不变的特征应起源于内部和相互侧面。内部不变性意味着可以通过单个域学习这些功能,并且该功能捕获了数据的内在语义,即在域内的属性,这是其他域的不可知论。相互不变性意味着可以通过多个域(跨域)学习这些特征,并且功能包含常见信息,即可转移的功能W.R.T.其他域。然后,我们为域不变特征探索提出了DIFEX。 DIFEX采用知识蒸馏框架来捕获高级傅立叶相,作为内部不变的特征,并将跨域相关对准作为相互不变的特征。我们进一步设计了探索损失,以增加功能多样性以更好地概括。对时间序列和视觉基准测试的广泛实验表明,所提出的DIFEX实现了最先进的性能。
translated by 谷歌翻译
收集足够标记的数据以建立人类活动识别(HAR)模型是昂贵且耗时的。对现有数据的培训通常会使模型偏向于培训数据的分布,因此该模型可能会在具有不同分布的测试数据上执行。尽管现有的转移学习和域适应性的努力试图解决上述问题,但他们仍然需要访问目标域上的未标记数据,这在实际情况下可能是不可能的。很少有作品注意训练一个模型,该模型可以很好地概括为HAR看不见的目标域。在本文中,我们提出了一种新的方法,称为可推广跨域HAR的语义歧视混合(SDMIX)。首先,我们介绍了语义感知的混音,该混音考虑了活动语义范围,以克服域差异带来的语义不一致。其次,我们引入了较大的利润损失,以增强混合歧视,以防止虚拟标签带来的错误分类。在五个公共数据集上进行的综合概括实验表明,我们的SDMIX基本上优于最先进的方法,其平均准确度提高了跨人员,交叉数据库和交叉位置HAR的平均准确性6%。
translated by 谷歌翻译
时间序列分类是现实世界中的重要问题。由于其非平稳属性随着时间的推移而变化,因此建立泛化模型以表现出来的分布仍然具有挑战性。在本文中,我们建议从分布的角度查看时间序列分类问题。我们认为时间复杂性归因于其中未知的潜在分布。为此,我们建议多元化学习时间序列分类的广义表示。多元化进行了一个迭代过程:它首先通过对抗训练获得了最坏情况的分布场景,然后与获得的子域的分布匹配。我们还提供了一些理论见解。我们进行有关手势识别,语音命令识别,可穿戴压力和影响检测的实验,以及基于传感器的人类活动识别,在不同的情况下总共有七个数据集。结果表明,多样化的多样化大大优于其他基线,并通过定性和定量分析有效地表征了潜在分布。
translated by 谷歌翻译
机器学习系统通常假设训练和测试分布是相同的。为此,关键要求是开发可以概括到未经看不见的分布的模型。领域泛化(DG),即分销概括,近年来引起了越来越令人利益。域概括处理了一个具有挑战性的设置,其中给出了一个或几个不同但相关域,并且目标是学习可以概括到看不见的测试域的模型。多年来,域概括地区已经取得了巨大进展。本文提出了对该地区最近进步的首次审查。首先,我们提供了域泛化的正式定义,并讨论了几个相关领域。然后,我们彻底审查了与域泛化相关的理论,并仔细分析了泛化背后的理论。我们将最近的算法分为三个类:数据操作,表示学习和学习策略,并为每个类别详细介绍几种流行的算法。第三,我们介绍常用的数据集,应用程序和我们的开放源代码库进行公平评估。最后,我们总结了现有文学,并为未来提供了一些潜在的研究主题。
translated by 谷歌翻译
域适应(da)尝试将知识从标记的源域传输到从源的不同分发的未标记的目标域。为此,DA方法包括源分类目标,以提取源知识和域对齐目标以减少域移位,确保知识转移。通常,前DA方法采用一些重量的超参数来线性地结合培训目标来形成整体目标。然而,由于域移位,这些目标的梯度方向可能彼此冲突。在这种情况下,线性优化方案可能会降低整体目标值,以损坏其中一个培训目标,导致限制解决方案。在本文中,我们从基于梯度的角度来看了DA的优化方案。我们提出了帕累托域适应(Paretoda)方法来控制整体优化方向,旨在协同优化所有培训目标。具体地,为了达到目标域的理想解决方案,我们设计了模拟目标分类的替代损失。为了提高目标预测准确性以支持模拟,我们提出了一种目标预测精炼机制,其通过贝叶斯定理利用域标签。另一方面,由于对象的加权方案的先验知识通常无法指导优化来接近目标域上的最佳解决方案,因此我们提出了一种动态的偏好机制,以动态指导我们的合作优化通过替代损失的梯度保持未标记的目标数据集。关于图像分类和语义分割基准的广泛实验证明了Paretoda的有效性
translated by 谷歌翻译
域泛化(DG)方法旨在开发概括到测试分布与训练数据不同的设置的模型。在本文中,我们专注于多源零拍DG的挑战性问题,其中来自多个源域的标记训练数据可用,但无法从目标域中访问数据。虽然这个问题已成为研究的重要话题,但令人惊讶的是,将所有源数据汇集在一起​​和培训单个分类器的简单解决方案在标准基准中具有竞争力。更重要的是,即使在不同域中明确地优化不变性的复杂方法也不一定提供对ERM的非微不足道的增益。在本文中,我们首次研究了预先指定的域标签和泛化性能之间的重要链接。使用动机案例研究和分布稳健优化算法的新变种,我们首先演示了如何推断的自定义域组可以通过数据集的原始域标签来实现一致的改进。随后,我们介绍了一种用于多域泛化,Muldens的一般方法,它使用基于ERM的深度合并骨干,并通过元优化算法执行隐式域重标。使用对多个标准基准测试的经验研究,我们表明Muldens不需要定制增强策略或特定于数据集的培训过程,始终如一地优于ERM,通过显着的边距,即使在比较时也会产生最先进的泛化性能对于利用域标签的现有方法。
translated by 谷歌翻译
当部署和培训之间存在分配变化时,深层神经网络的性能恶化严重。域的概括(DG)旨在通过仅依靠一组源域来安全地传输模型以看不见目标域。尽管已经提出了各种DG方法,但最近的一项名为Domainbed的研究表明,其中大多数没有超过简单的经验风险最小化(ERM)。为此,我们提出了一个通用框架,该框架与现有的DG算法是正交的,并且可以始终如一地提高其性能。与以前的DG作品不同的是,在静态源模型上有希望成为通用的DG,我们提出的ADAODM会在测试时间适应不同目标域的源模型。具体而言,我们在共享域形式的特征提取器上创建多个域特异性分类器。特征提取器和分类器以对抗性方式进行了训练,其中特征提取器将输入样品嵌入到域不变的空间中,并且多个分类器捕获了每个分类器与特定源域有关的独特决策边界。在测试过程中,可以通过利用源分类器之间的预测分歧来有效地衡量目标和源域之间的分布差异。通过微调源模型以最大程度地减少测试时间的分歧,目标域特征与不变特征空间很好地对齐。我们验证了两种流行的DG方法,即ERM和Coral,以及四个DG基准,即VLCS,PACS,OfficeHome和TerrainCognita。结果表明,ADAODM稳定地提高了对看不见的域的概括能力,并实现了最先进的性能。
translated by 谷歌翻译
学习域不变的表示已成为域适应/概括的最受欢迎的方法之一。在本文中,我们表明不变的表示可能不足以保证良好的概括,在考虑标签函数转移的情况下。受到这一点的启发,我们首先在经验风险上获得了新的概括上限,该概括风险明确考虑了标签函数移动。然后,我们提出了特定领域的风险最小化(DRM),该风险最小化(DRM)可以分别对不同域的分布移动进行建模,并为目标域选择最合适的域。对四个流行的域概括数据集(CMNIST,PACS,VLCS和域)进行了广泛的实验,证明了所提出的DRM对域泛化的有效性,具有以下优点:1)它的表现明显超过了竞争性盆地的表现; 2)与香草经验风险最小化(ERM)相比,所有训练领域都可以在所有训练领域中具有可比性或优越的精度; 3)在培训期间,它仍然非常简单和高效,4)与不变的学习方法是互补的。
translated by 谷歌翻译
对分布(OOD)数据的概括是人类自然的能力,但对于机器而言挑战。这是因为大多数学习算法强烈依赖于i.i.d.〜对源/目标数据的假设,这在域转移导致的实践中通常会违反。域的概括(DG)旨在通过仅使用源数据进行模型学习来实现OOD的概括。在过去的十年中,DG的研究取得了长足的进步,导致了广泛的方法论,例如,基于域的一致性,元学习,数据增强或合奏学习的方法,仅举几例;还在各个应用领域进行了研究,包括计算机视觉,语音识别,自然语言处理,医学成像和强化学习。在本文中,首次提供了DG中的全面文献综述,以总结过去十年来的发展。具体而言,我们首先通过正式定义DG并将其与其他相关领域(如域适应和转移学习)联系起来来涵盖背景。然后,我们对现有方法和理论进行了彻底的审查。最后,我们通过有关未来研究方向的见解和讨论来总结这项调查。
translated by 谷歌翻译
机器学习模型的基本挑战是由于杂散的相关性部分地推广到分销(OOD)数据。为了解决这一挑战,我们首先将“ood泛化问题”正式形式化为受限制的优化,称为解剖学限制域泛化(DDG)。我们以有限维参数化和经验逼近的方式将该非普通约束优化放宽到贸易形式。然后,提供了对上述变换偏离原始问题的程度的理论分析。基于转型,我们提出了一种用于联合表示解剖和域泛化的原始双向算法。与基于领域对抗性培训和域标签的传统方法形成鲜明对比,DDG共同学习解剖学的语义和变化编码器,使灵活的操纵和增强训练数据。 DDG旨在学习语义概念的内在表示,这些概念不变于滋扰因素,并遍布不同的域。对流行基准的综合实验表明,DDG可以实现竞争性的ood性能,并在数据中揭示可解释的突出结构。
translated by 谷歌翻译
域泛化(DG)方法旨在通过仅使用来自源域的训练数据来实现未经证明的目标域的概括性。虽然已经提出了各种DG方法,但最近的一项研究表明,在一个公平的评估方案下,称为域底,简单的经验风险最小化(ERM)方法可与以前的方法相当。不幸的是,简单地解决了ERM在复杂的非凸损函数上,可以通过寻求尖锐的最小值来容易地导致次优化的普遍性。在本文中,我们理论上表明发现扁平最小值导致较小的域泛化差距。我们还提出了一种简单而有效的方法,名为随机重量平均(纵向),找到扁平的最小值。瑞郎发现更漂亮的最小值,并且由于通过密集和过度感知的随机重量采样策略而遭受的过度装备不足。瑞士瑞士展示了五个DG基准测试,即PACS,VLC,OfficeHome,Terraincognita和Domainnet的最先进的表演,符合域名准确度的一致和大幅度+ 1.6%。我们还与常规的泛化方法(如数据增强和一致性正则化方法)进行比较,以验证显着的性能改进是通过寻求扁平的最小值,而不是更好的域概括性。最后但并非最不重要的是,瑞士剧本适应现有的DG方法而无需修改;施联和现有DG方法的组合进一步提高了DG性能。源代码可在https://github.com/khanrc/swad提供。
translated by 谷歌翻译
The goal of domain generalization algorithms is to predict well on distributions different from those seen during training. While a myriad of domain generalization algorithms exist, inconsistencies in experimental conditions-datasets, architectures, and model selection criteria-render fair and realistic comparisons difficult. In this paper, we are interested in understanding how useful domain generalization algorithms are in realistic settings. As a first step, we realize that model selection is non-trivial for domain generalization tasks. Contrary to prior work, we argue that domain generalization algorithms without a model selection strategy should be regarded as incomplete. Next, we implement DOMAINBED, a testbed for domain generalization including seven multi-domain datasets, nine baseline algorithms, and three model selection criteria. We conduct extensive experiments using DO-MAINBED and find that, when carefully implemented, empirical risk minimization shows state-of-the-art performance across all datasets. Looking forward, we hope that the release of DOMAINBED, along with contributions from fellow researchers, will streamline reproducible and rigorous research in domain generalization. * Alphabetical order, equal contribution.Preprint. Under review.
translated by 谷歌翻译
我们关注模型概括中最坏的情况,因为一个模型旨在在许多看不见的域上表现良好,而只有一个单个域可供训练。我们提出基于元学习的对抗领域的增强,以解决此范围泛化问题。关键思想是利用对抗性训练来创建“虚构的”但“具有挑战性”的人群,模型可以从中学会通过理论保证进行概括。为了促进快速和理想的域增强,我们将模型训练施加在元学习方案中,并使用Wasserstein自动编码器放宽广泛使用的最坏情况的约束。我们通过整合有效域概括的不确定性定量来进一步改善我们的方法。在多个基准数据集上进行的广泛实验表明其在解决单个领域概括方面的出色性能。
translated by 谷歌翻译
最近的智能故障诊断(IFD)的进展大大依赖于深度代表学习和大量标记数据。然而,机器通常以各种工作条件操作,或者目标任务具有不同的分布,其中包含用于训练的收集数据(域移位问题)。此外,目标域中的新收集的测试数据通常是未标记的,导致基于无监督的深度转移学习(基于UDTL为基础的)IFD问题。虽然它已经实现了巨大的发展,但标准和开放的源代码框架以及基于UDTL的IFD的比较研究尚未建立。在本文中,我们根据不同的任务,构建新的分类系统并对基于UDTL的IFD进行全面审查。对一些典型方法和数据集的比较分析显示了基于UDTL的IFD中的一些开放和基本问题,这很少研究,包括特征,骨干,负转移,物理前导等的可转移性,强调UDTL的重要性和再现性 - 基于IFD,整个测试框架将发布给研究界以促进未来的研究。总之,发布的框架和比较研究可以作为扩展界面和基本结果,以便对基于UDTL的IFD进行新的研究。代码框架可用于\ url {https:/github.com/zhaozhibin/udtl}。
translated by 谷歌翻译
卷积神经网络已广泛应用于医学图像分割,并取得了相当大的性能。但是,性能可能会受到训练数据(源域)和测试数据(目标域)之间域间隙的显着影响。为了解决此问题,我们提出了一种基于数据操作的域泛化方法,称为域概括(AADG)的自动增强。我们的AADG框架可以有效地采样数据增强策略,从而产生新的领域并从适当的搜索空间中多样化训练集。具体而言,我们介绍了一项新的代理任务,以最大程度地提高了多个增强新颖的域之间的多样性,该域通过单位球体空间中的凹痕距离来衡量,从而使自动化的增强可牵引。对抗性训练和深入的强化学习有效地搜索了目标。全面执行了11个公开底部的底面图像数据集的定量和定性实验(四个用于视网膜血管分割,四个用于视盘和杯子和杯(OD/OC)分割(OD/OC)分割,视网膜病变细分进行了三个)。两个用于视网膜脉管系统分割的八八个数据集进一步涉及验证跨模式泛化。我们提出的AADG通过视网膜船,OD/OC和病变细分任务的相当大的利润来表现出最新的概括性能,并优于现有方法。学到的政策在经验上得到了证实为模型不平衡,并且可以很好地转移到其他模型中。源代码可在https://github.com/crazorback/aadg上找到。
translated by 谷歌翻译
域的概括方法旨在学习使用有限数量的源域,在训练过程中无需访问目标域样本的数据,以学习强大的域移动模型。用于域概括的流行域对齐方法寻求通过最大程度地降低所有域的特征分布之间的差异来提取域不变特征,从而无视域间关系。在本文中,我们提出了一种新颖的表示学习方法,该方法有选择地强制估计密切相关的源域之间的预测一致性。具体而言,我们假设域共享不同的类信息表示形式,因此,我们仅适用于所有可能导致负转移的域,而是正规化与密切相关域之间的差异。我们将我们的方法应用于时间序列分类任务,并在三个公共现实世界数据集上进行全面的实验。与最先进的方法相比,在准确性和模型校准方面,我们的方法比基线大大改善了基线,并取得更好或竞争性的性能。
translated by 谷歌翻译
旨在概括在源域中训练的模型来看不见的目标域,域泛化(DG)最近引起了很多关注。 DG的关键问题是如何防止对观察到的源极域的过度接收,因为在培训期间目标域不可用。我们调查过度拟合不仅导致未经看不见的目标域的普遍推广能力,而且在测试阶段导致不稳定的预测。在本文中,我们观察到,在训练阶段采样多个任务并在测试阶段产生增强图像,很大程度上有利于泛化性能。因此,通过处理不同视图的任务和图像,我们提出了一种新颖的多视图DG框架。具体地,在训练阶段,为了提高泛化能力,我们开发了一种多视图正则化元学习算法,该算法采用多个任务在更新模型期间产生合适的优化方向。在测试阶段,为了减轻不稳定的预测,我们利用多个增强图像来产生多视图预测,这通过熔断测试图像的不同视图的结果显着促进了模型可靠性。三个基准数据集的广泛实验验证了我们的方法优于几种最先进的方法。
translated by 谷歌翻译
为了解决培训和测试数据之间的分布变化,域的概括(DG)利用多个源域来学习一个概括地看不见域的模型。但是,现有的DG方法通常遭受过度适应源域的影响,部分原因是特征空间中预期区域的覆盖率有限。在此激励的情况下,我们建议与数据插值和外推进行混合,以涵盖潜在的看不见区域。为了防止不受约束的外推的有害影响,我们仔细设计了一种策略来生成实例权重,名为Flatents-Awarnement-Awarnement-Awarnement-Awarness-Angients-Awments-Altents-Altents-Alignness-Actient-Actient-Actient-Actient-Actient-Actient-natments-Actient-Actient-Actient-natments-naterment-Actient-naterment-naterments-awite渐变的混音(FGMIX)。该政策采用基于梯度的相似性,将更大的权重分配给携带更多不变信息的实例,并了解相似性的功能,以提高最小值以更好地概括。在域基准测试中,我们验证了FGMIX各种设计的功效,并证明了其优于其他DG算法。
translated by 谷歌翻译
Unsupervised Domain Adaptation (UDA) has emerged as a powerful solution for the domain shift problem via transferring the knowledge from a labeled source domain to a shifted unlabeled target domain. Despite the prevalence of UDA for visual applications, it remains relatively less explored for time-series applications. In this work, we propose a novel lightweight contrastive domain adaptation framework called CoTMix for time-series data. Unlike existing approaches that either use statistical distances or adversarial techniques, we leverage contrastive learning solely to mitigate the distribution shift across the different domains. Specifically, we propose a novel temporal mixup strategy to generate two intermediate augmented views for the source and target domains. Subsequently, we leverage contrastive learning to maximize the similarity between each domain and its corresponding augmented view. The generated views consider the temporal dynamics of time-series data during the adaptation process while inheriting the semantics among the two domains. Hence, we gradually push both domains towards a common intermediate space, mitigating the distribution shift across them. Extensive experiments conducted on four real-world time-series datasets show that our approach can significantly outperform all state-of-the-art UDA methods. The implementation code of CoTMix is available at \href{https://github.com/emadeldeen24/CoTMix}{github.com/emadeldeen24/CoTMix}.
translated by 谷歌翻译