In this work, we seek to build effective code-switched (CS) automatic speech recognition systems (ASR) under the zero-shot setting where no transcribed CS speech data is available for training. Previously proposed frameworks which conditionally factorize the bilingual task into its constituent monolingual parts are a promising starting point for leveraging monolingual data efficiently. However, these methods require the monolingual modules to perform language segmentation. That is, each monolingual module has to simultaneously detect CS points and transcribe speech segments of one language while ignoring those of other languages -- not a trivial task. We propose to simplify each monolingual module by allowing them to transcribe all speech segments indiscriminately with a monolingual script (i.e. transliteration). This simple modification passes the responsibility of CS point detection to subsequent bilingual modules which determine the final output by considering multiple monolingual transliterations along with external language model information. We apply this transliteration-based approach in an end-to-end differentiable neural network and demonstrate its efficacy for zero-shot CS ASR on Mandarin-English SEAME test sets.
translated by 谷歌翻译
会话双语语言包括三种类型的话语:两个纯粹单色类型和一个内侧型代码切换类型。在这项工作中,我们提出了一个综合框架,共同模拟包括双语语音识别的单声道和代码交换机子任务的可能性。通过定义具有标签到帧同步的单个子任务,我们的联合建模框架可以条件地分解,使得可以仅获得或可能不切换的最终双语输出,仅给出单格式信息。我们表明,该条件分解的联合框架可以由端到端可分解的神经网络进行建模。我们展示了我们拟议模型在单语和代码切换的语料中对双语普通话语音识别的效果。
translated by 谷歌翻译
基于内部语言模型估计(ILME)语言模型(LM)融合已显示出明显改善的识别结果,而识别域内和跨域语音识别任务的常规浅融合。在本文中,我们试图将ILME方法应用于跨域代码转换语音识别(CSSR)工作。具体而言,我们的好奇心来自几个方面。首先,我们很好奇基于ILME的LM融合对内域和跨域CSSR任务的有效性。我们在不合并两个代码转换域的情况下对此进行验证。更重要的是,我们通过合并两个单语言数据集训练端到端(E2E)语音识别模型,并观察到拟议的基于ILME的LM Fusion对CSSR的功效。来自东南亚和另一个中国大陆CS数据集的SEAME的实验结果证明了拟议的基于ILME的LM融合方法的有效性。
translated by 谷歌翻译
最近,语音界正在看到从基于深神经网络的混合模型移动到自动语音识别(ASR)的端到端(E2E)建模的显着趋势。虽然E2E模型在大多数基准测试中实现最先进的,但在ASR精度方面,混合模型仍然在当前的大部分商业ASR系统中使用。有很多实际的因素会影响生产模型部署决定。传统的混合模型,用于数十年的生产优化,通常擅长这些因素。在不为所有这些因素提供优异的解决方案,E2E模型很难被广泛商业化。在本文中,我们将概述最近的E2E模型的进步,专注于解决行业视角的挑战技术。
translated by 谷歌翻译
代码切换(CS)是多语言社区中的常见语言现象,其包括在说话时在语言之间切换。本文提出了我们对普通话 - 英语CS演讲的结束地理识别的调查。我们分析了不同的CS特定问题,例如CS语言对中语言之间的属性不匹配,切换点的不可预测性质,以及数据稀缺问题。通过使用分层Softmax的语言识别通过建模子字单元来利用非语言识别来利用非统计符号来利用和改善最先进的端到端系统,通过人为地降低说话率,并通过使用增强数据来实现子字单元。使用速度扰动技术和几个单机数据集不仅可以在CS语音上提高最终性能,还可以在单​​格式基准上,以使系统更适用于现实生活环境。最后,我们探讨了不同语言模型集成方法对提出模型性能的影响。我们的实验结果表明,所有提出的技术都提高了识别性能。最佳组合系统在混合误差率方面将基线系统提高到35%,并在单机基准上提供可接受的性能。
translated by 谷歌翻译
培训多语言自动语音识别(ASR)系统具有挑战性,因为声学和词汇信息通常是特定于语言的。由于缺乏开源数据集和不同方法的结果,培训对Indo语言的多语言系统更加困难。我们将端到端多语言语音识别系统的性能与以语言识别(LID)为条件的单语模型的性能进行比较。来自多语言模型的解码信息用于语言识别,然后与单语模型结合使用,以改善跨语言的50%WER。我们还提出了一种类似的技术来解决代码切换问题,并在印度英语和孟加拉国英语中分别达到21.77和28.27。我们的工作谈到了如何将基于变压器的ASR尤其是WAV2VEC 2.0应用于开发用于指示语言的多语言ASR和代码转换ASR。
translated by 谷歌翻译
双重编码器结构成功地利用了两个特定语言的编码器(LSE)进行代码转换语音识别。由于LSE由两个预训练的语言特定模型(LSM)初始化,因此双编码器结构可以利用足够的单语言数据并捕获单个语言属性。但是,现有方法对LSE的语言没有限制,并且不足以针对LSM的语言知识。在本文中,我们提出了一种特定语言的特征辅助(LSCA)方法来减轻上述问题。具体来说,在培训期间,我们引入了两种特定语言的损失作为语言限制,并为其生成相应的语言目标。在解码过程中,我们通过组合两个LSM和混合模型的输出概率来考虑LSM的解码能力,以获得最终预测。实验表明,LSCA的训练或解码方法可以改善模型的性能。此外,通过组合LSCA的训练和解码方法,最佳结果可以在代码切换测试集上获得多达15.4%的相对误差。此外,该系统可以通过使用我们的方法来很好地处理代码转换语音识别任务,而无需额外的共享参数,甚至可以基于两个预训练的LSM进行重新训练。
translated by 谷歌翻译
多语言语音识别已引起大幅关注,作为补偿低资源语言数据稀缺性的有效方法。端到端(E2E)建模比常规混合系统优选,这主要是由于没有词典要求。但是,在有限的数据方案中,混合DNN-HMM仍然优于E2E模型。此外,手动词典创建的问题已通过公开训练的素式训练型(G2P)(G2P)和多种语言的IPA音译来缓解。在本文中,在低资源语言的多语言设置中提出了一种混合DNN-HMM声学模型的新型方法。针对目标语言语言信号的不同单语言模型的后验分布融合在一起。为每个源目标语言对训练了一个单独的回归神经网络,以将后者从源声学模型转换为目标语言。与ASR培训相比,这些网络需要非常有限的数据。与多语言和单语基线相比,后融合的相对增益分别为14.65%和6.5%。跨语性模型融合表明,无需使用依赖语言的ASR的后代,就可以实现可比的结果。
translated by 谷歌翻译
语音处理系统目前不支持绝大多数语言,部分原因是低资源语言中的数据缺乏。交叉语言传输提供了一种引人注目的方法来帮助通过将高资源数据纳入低资源系统来帮助桥接这种数字鸿沟。目前的交叉算法在一些基于文本的任务和与一些低资源语言中的语音相关任务中表现出了成功。但是,缩放语音系统以支持数百个低资源语言仍未解决。为了帮助桥接这种差距,我们提出了一种语言相似性方法,可以有效地识别数百种语言的声学交叉传输对。我们展示了我们在语言家庭分类,语音识别和语音综合任务中的方法的有效性。
translated by 谷歌翻译
口语内容中的话语码切换(CS)的普及性具有强制ASR系统来处理混合输入。然而,设计CS-ASR具有许多挑战,主要原因是数据稀缺,语法结构复杂性和不匹配以及不平衡的语言使用分配。最近的ASR研究表明E2E-ASR使用多语种数据来处理CS现象的少量CS数据。但是,对CS数据的依赖仍然存在。在这项工作中,我们提出了一种方法来增加用于人工生成的CS文本的单格式数据以改善不同的语音模块。我们在利用对齐的转换对的同时基于对等效约束理论的方法,以生成语法有效的CS内容。我们的经验结果表明,两种生态和嘈杂的CS测试集,在困惑中的相对增益为29-34%,而在WER中约为2%。最后,人类评估表明,人类可以获得83.8%的生成数据。
translated by 谷歌翻译
End-to-end multilingual ASR has become more appealing because of several reasons such as simplifying the training and deployment process and positive performance transfer from high-resource to low-resource languages. However, scaling up the number of languages, total hours, and number of unique tokens is not a trivial task. This paper explores large-scale multilingual ASR models on 70 languages. We inspect two architectures: (1) Shared embedding and output and (2) Multiple embedding and output model. In the shared model experiments, we show the importance of tokenization strategy across different languages. Later, we use our optimal tokenization strategy to train multiple embedding and output model to further improve our result. Our multilingual ASR achieves 13.9%-15.6% average WER relative improvement compared to monolingual models. We show that our multilingual ASR generalizes well on an unseen dataset and domain, achieving 9.5% and 7.5% WER on Multilingual Librispeech (MLS) with zero-shot and finetuning, respectively.
translated by 谷歌翻译
多语言自动语音识别(ASR)系统大多受益于低资源语言,但相对于单语言对应物,多种语言的性能下降。有限的研究集中在理解多语言语音识别设置中的语言行为。在本文中,提出了一种新型的数据驱动方法来研究跨语性的声学表达相似性。该技术衡量了各种单语言模型与目标语音信号的后验分布之间的相似性。深度神经网络被训练为映射网络,以将分布从不同的声学模型转换为直接比较的形式。分析观察到,语言接近性无法通过集合音素的体积真正估计。对拟议的映射网络的熵分析表明,具有较小重叠的语言可以更适合跨语性转移,因此在多语言设置中更有益。最后,提出的后验变换方法被利用为目标语言的单语模型融合。比单语言对应物的相对提高约为8%。
translated by 谷歌翻译
我们提出了Maestro,这是一种自制的培训方法,可以统一从语音和文本方式中学到的表示形式。从语音信号中进行的自我监督学习旨在学习信号中固有的潜在结构,而从文本尝试捕获词汇信息的文本尝试中学习。从不配对的语音和文本序列中学习对齐表示是一项具有挑战性的任务。先前的工作要么隐含地强制执行从这两种方式中学到的表示形式,要通过多任务和参数共享在潜在空间中对齐,或通过语音综合通过模态转换而明确地进行。前者受到两种方式之间的干扰,而后者则引入了额外的复杂性。在本文中,我们提出了一种新颖的算法Maestro,旨在同时从这两种方式中学习统一的表示,可以转移到各种下游任务,例如自动语音识别(ASR)和语音翻译(ST)。 Maestro通过序列比对,持续时间预测和匹配的嵌入在学习空间中通过对齐的蒙版模型损失来学习统一的表示形式。我们在Voxpopuli多语言ASR上建立了一个新的最先进(SOTA),单词错误率相对相对降低8%(WER),多域Speetstew ASR(相对3.7%)和21种英语多语言ST在Covost 2上2.8 BLEU的改善平均21种语言。
translated by 谷歌翻译
由于(1)低资源语言的数据稀缺,(2)培训和清爽100+单语言模型的昂贵计算成本,培训和部署混合语音识别的变压器LMS以低资源语言重新排行第二通道是具有挑战性的。,以及(3)考虑流量稀疏的效率低下。在这项研究中,我们提出了一种新的方法,将多个低资源的区域分组在一起,并优化ASR中多语言变压器LMS的性能。我们的本地组多语言变压器LMS的表现优于传统的多语言LM,以及降低维护成本和运营费用。此外,对于部署单语模型的低资源但人口流量的地区是可行的,我们表明,对我们的语言环境组的多语言LMS进行微调可产生比基线单语LMS更好的单语LM候选者。
translated by 谷歌翻译
本文提出了我们在改进患有数据稀缺的代码切换语言模型的最新努力。我们调查通过人为生成它们来增加代码切换培训文本数据的方法。具体地,我们提出了一种基于循环一致的对手网络的基于框架,将单晶文本传输到代码切换文本中,考虑代码切换为讲话方式。我们在Seame Corpus上的实验结果表明,利用人工生成的码切换文本数据始终如一地提高语言模型以及自动语音识别性能。
translated by 谷歌翻译
多语言语言模型(\ mllms),如mbert,xlm,xlm-r,\ textit {etc。}已成为一种可行的选择,使预先估计到大量语言的力量。鉴于他们的成功在零射击转移学习中,在(i)建立更大的\ mllms〜覆盖了大量语言(ii)创建覆盖更广泛的任务和语言来评估的详尽工作基准mllms〜(iii)分析单音零点,零拍摄交叉和双语任务(iv)对Monolingual的性能,了解\ mllms〜(v)增强(通常)学习的通用语言模式(如果有的话)有限的容量\ mllms〜以提高他们在已见甚至看不见语言的表现。在这项调查中,我们审查了现有的文学,涵盖了上述与\ MLLMS有关的广泛研究领域。根据我们的调查,我们建议您有一些未来的研究方向。
translated by 谷歌翻译
我们介绍了一种用于跨语言训练ASR系统的方法,使用目标语言绝对没有转录的训练数据,并且没有相关语言的语音知识。我们的方法使用了一种解密算法的新应用,该算法仅在目标语言中仅操作不配对的语音和文本数据。我们将此破译应用于由通用电话识别器产生的电话序列,由语言语音语料库培训,我们遵循平稳半监督培训,以获得新语言的声学模型。据我们所知,这是零资源交叉语言ASR的第一种实用方法,不依赖于任何手工制作的语音信息。我们对来自Globalphone语料库的读语音进行了实验,并表明可以在目标语言中仅在20分钟的数据上学习解密模型。当用于生成半监督培训的伪标签时,我们获得了比在同一数据上培训的等同完全监督模型的25%至仅5%的绝对差。
translated by 谷歌翻译
代码转换是关于在通信过程中处理替代语言。训练端到端(E2E)自动语音识别(ASR)系统用于代码开关是一个充满挑战的问题,因为由于存在多种语言,因此缺乏增加语言上下文混乱的数据加剧的数据。在本文中,我们提出了一种与语言相关的注意机制,以减少基于等价约束理论(EC)的E2E代码转换ASR模型的多语言上下文混乱。语言理论要求在代码转换句子中发生的任何单语片段都必须发生在一个单语句子中。它在单语言数据和代码转换数据之间建立了一个桥梁。通过计算多种语言的各自注意力,我们的方法可以从丰富的单语言数据中有效地传输语言知识。我们在ASRU 2019-English代码转换挑战数据集上评估我们的方法。与基线模型相比,提出的方法可实现11.37%的相对混合错误率降低。
translated by 谷歌翻译
设备的端到端(E2E)模型已显示出对质量和延迟的英语语音搜索任务的常规模型的改进。 E2E模型还显示了多语言自动语音识别(ASR)的有希望的结果。在本文中,我们将以前的容量解决方案扩展到流应用程序,并提出流媒体多语言E2E ASR系统,该系统在设备上完全运行,质量和延迟与单个单语言模型相当。为了实现这一目标,我们提出了一个编码器端量模型和一个终端(EOU)联合层,以提高质量和延迟权衡。我们的系统以语言不可知论的方式构建,允许它实时支持本条件的代码切换。为了解决大型模型的可行性问题,我们进行了设备分析,并用最近开发的嵌入解码器代替了耗时的LSTM解码器。通过这些更改,我们设法在不到实时的时间内在移动设备上运行了这样的系统。
translated by 谷歌翻译
本文介绍了基于Wav2VEC 2.0的跨语言语音表示学习的大规模模型。我们在128种语言中培训最多2B个公共讲话音频的近半小时的型号的模型,比公共数据的数量级比最大的已知事先工作。我们的评估涵盖了广泛的任务,域,数据制度和语言,都是高低资源。在Covost-2语音翻译基准测试中,我们将先前的最先进的状态平均为7.4 BLEU超过21个翻译方向进入英语。对于语音识别,XLS-R在Babel,MLS,CommonVoice以及Voxpopuli上的最佳已知工作中提高,降低了相对的误差率14-34%。 XLS-R还在Voxlingua107语言识别上设置了新的技术状态。此外,我们表明,具有足够的模型规模,交叉思维预先预测可以在将英语演讲翻译成其他语言时才能优于英语撇印,这是一个有利于单晶的预借预制的设置。我们希望XLS-R可以帮助改善世界上更多语言的语音处理任务。
translated by 谷歌翻译