尖峰神经网络(SNNS)是脑激发的模型,可在神经形状硬件上实现节能实现。然而,由于尖刺神经元模型的不连续性,SNN的监督培训仍然是一个难题。大多数现有方法模仿人工神经网络的BackProjagation框架和前馈架构,并在尖峰时间使用代理衍生物或计算梯度来处理问题。这些方法累积近似误差,或者仅通过现有尖峰被限制地传播信息,并且通常需要沿着具有大的内存成本和生物言行的时间步长的信息传播。在这项工作中,我们考虑反馈尖刺神经网络,这些神经网络更为大脑,并提出了一种新的训练方法,不依赖于前向计算的确切反向。首先,我们表明,具有反馈连接的SNN的平均触发速率将沿着时间的时间逐渐发展到均衡状态,这沿着定点方程沿着时间延续。然后通过将反馈SNN的前向计算作为这种等式的黑匣子求解器,并利用了方程上的隐式差异,我们可以计算参数的梯度而不考虑确切的前向过程。以这种方式,向前和向后程序被解耦,因此避免了不可微分的尖峰功能的问题。我们还简要介绍了隐含分化的生物合理性,这只需要计算另一个平衡。在Mnist,Fashion-Mnist,N-Mnist,CiFar-10和CiFar-100上进行了广泛的实验,证明了我们在少量时间步骤中具有较少神经元和参数的反馈模型的方法的优越性。我们的代码是在https://github.com/pkuxmq/ide-fsnn中获得的。
translated by 谷歌翻译
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models. Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency. Particularly, backpropagation through time (BPTT) with surrogate gradients (SG) is popularly used to achieve high performance in a very small number of time steps. However, it is at the cost of large memory consumption for training, lack of theoretical clarity for optimization, and inconsistency with the online property of biological learning and rules on neuromorphic hardware. Other works connect spike representations of SNNs with equivalent artificial neural network formulation and train SNNs by gradients from equivalent mappings to ensure descent directions. But they fail to achieve low latency and are also not online. In this work, we propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning by tracking presynaptic activities and leveraging instantaneous loss and gradients. Meanwhile, we theoretically analyze and prove that gradients of OTTT can provide a similar descent direction for optimization as gradients based on spike representations under both feedforward and recurrent conditions. OTTT only requires constant training memory costs agnostic to time steps, avoiding the significant memory costs of BPTT for GPU training. Furthermore, the update rule of OTTT is in the form of three-factor Hebbian learning, which could pave a path for online on-chip learning. With OTTT, it is the first time that two mainstream supervised SNN training methods, BPTT with SG and spike representation-based training, are connected, and meanwhile in a biologically plausible form. Experiments on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS demonstrate the superior performance of our method on large-scale static and neuromorphic datasets in small time steps.
translated by 谷歌翻译
由于稀疏,异步和二进制事件(或尖峰)驱动加工,尖峰神经网络(SNNS)最近成为深度学习的替代方案,可以在神经形状硬件上产生巨大的能效益。然而,从划痕训练高精度和低潜伏期的SNN,患有尖刺神经元的非微弱性质。要在SNNS中解决此培训问题,我们重新批准批量标准化,并通过时间(BNTT)技术提出时间批量标准化。大多数先前的SNN工程到现在忽略了批量标准化,认为它无效地训练时间SNN。与以前的作品不同,我们提出的BNTT沿着时轴沿着时间轴解耦的参数,以捕获尖峰的时间动态。在BNTT中的时间上不断发展的可学习参数允许神经元通过不同的时间步长来控制其尖峰率,从头开始实现低延迟和低能量训练。我们对CiFar-10,CiFar-100,微小想象特和事件驱动的DVS-CIFAR10数据集进行实验。 BNTT允许我们首次在三个复杂的数据集中培训深度SNN架构,只需25-30步即可。我们还使用BNTT中的参数分布提前退出算法,以降低推断的延迟,进一步提高了能量效率。
translated by 谷歌翻译
尖峰神经网络(SNN)是一种受脑启发的模型,具有更时空的信息处理能力和计算能效效率。但是,随着SNN深度的增加,由SNN​​的重量引起的记忆问题逐渐引起了人们的注意。受到人工神经网络(ANN)量化技术的启发,引入了二进制SNN(BSNN)来解决记忆问题。由于缺乏合适的学习算法,BSNN通常由ANN-SNN转换获得,其准确性将受到训练有素的ANN的限制。在本文中,我们提出了具有准确性损失估计器的超低潜伏期自适应局部二进制二进制尖峰神经网络(ALBSNN),该网络层动态选择要进行二进制的网络层,以通过评估由二进制重量引起的错误来确保网络的准确性在网络学习过程中。实验结果表明,此方法可以将存储空间降低超过20%,而不会丢失网络准确性。同时,为了加速网络的训练速度,引入了全球平均池(GAP)层,以通过卷积和合并的组合替换完全连接的层,以便SNN可以使用少量时间获得更好识别准确性的步骤。在仅使用一个时间步骤的极端情况下,我们仍然可以在三个不同的数据集(FashionMnist,CIFAR-10和CIFAR-10和CIFAR-100)上获得92.92%,91.63%和63.54%的测试精度。
translated by 谷歌翻译
由于它们的时间加工能力及其低交换(尺寸,重量和功率)以及神经形态硬件中的节能实现,尖峰神经网络(SNNS)已成为传统人工神经网络(ANN)的有趣替代方案。然而,培训SNNS所涉及的挑战在准确性方面有限制了它们的表现,从而限制了他们的应用。因此,改善更准确的特征提取的学习算法和神经架构是SNN研究中的当前优先级之一。在本文中,我们展示了现代尖峰架构的关键组成部分的研究。我们在从最佳执行网络中凭经验比较了图像分类数据集中的不同技术。我们设计了成功的残余网络(Reset)架构的尖峰版本,并测试了不同的组件和培训策略。我们的结果提供了SNN设计的最新版本,它允许在尝试构建最佳视觉特征提取器时进行明智的选择。最后,我们的网络优于CIFAR-10(94.1%)和CIFAR-100(74.5%)数据集的先前SNN架构,并将现有技术与DVS-CIFAR10(71.3%)相匹配,参数较少而不是先前的状态艺术,无需安静转换。代码在https://github.com/vicenteax/spiking_resnet上获得。
translated by 谷歌翻译
尽管神经形态计算的快速进展,但尖刺神经网络(SNNS)的能力不足和不足的表现力严重限制了其在实践中的应用范围。剩余学习和捷径被证明是培训深层神经网络的重要方法,但以前的工作评估了他们对基于尖峰的通信和时空动力学的特征的适用性。在本文中,我们首先确定这种疏忽导致受阻信息流程和伴随以前的残留SNN中的降解问题。然后,我们提出了一种新型的SNN定向的残余块MS-Reset,能够显着地扩展直接训练的SNN的深度,例如,在ImageNet上最多可在CiFar-10和104层上完成482层,而不会观察到任何轻微的降级问题。我们验证了基于帧和神经形态数据集的MS-Reset的有效性,并且MS-Resnet104在直接训练的SNN的域中的第一次实现了在ImageNet上的76.02%精度的优越结果。还观察到巨大的能量效率,平均仅需要每根神经元的一穗来分类输入样本。我们相信我们强大且可扩展的型号将为进一步探索SNN提供强大的支持。
translated by 谷歌翻译
Spiking neural networks (SNN) are a viable alternative to conventional artificial neural networks when energy efficiency and computational complexity are of importance. A major advantage of SNNs is their binary information transfer through spike trains. The training of SNN has, however, been a challenge, since neuron models are non-differentiable and traditional gradient-based backpropagation algorithms cannot be applied directly. Furthermore, spike-timing-dependent plasticity (STDP), albeit being a spike-based learning rule, updates weights locally and does not optimize for the output error of the network. We present desire backpropagation, a method to derive the desired spike activity of neurons from the output error. The loss function can then be evaluated locally for every neuron. Incorporating the desire values into the STDP weight update leads to global error minimization and increasing classification accuracy. At the same time, the neuron dynamics and computational efficiency of STDP are maintained, making it a spike-based supervised learning rule. We trained three-layer networks to classify MNIST and Fashion-MNIST images and reached an accuracy of 98.41% and 87.56%, respectively. Furthermore, we show that desire backpropagation is computationally less complex than backpropagation in traditional neural networks.
translated by 谷歌翻译
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs) that encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions. The proposed algorithm inherits the advantages of conventional timing-based methods in that it computes accurate gradients with respect to spike timing, which promotes ideal temporal coding. Unlike conventional methods where each neuron fires at most once, the proposed algorithm allows each neuron to fire multiple times. This extension naturally improves the computational capacity of SNNs. Our SNN model outperformed comparable SNN models and achieved as high accuracy as non-convolutional artificial neural networks. The spike count property of our networks was altered depending on the time constant of the postsynaptic current and the membrane potential. Moreover, we found that there existed the optimal time constant with the maximum test accuracy. That was not seen in conventional SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This result demonstrates the computational properties of SNNs that biologically encode information into the multi-spike timing of individual neurons. Our code would be publicly available.
translated by 谷歌翻译
Event-based simulations of Spiking Neural Networks (SNNs) are fast and accurate. However, they are rarely used in the context of event-based gradient descent because their implementations on GPUs are difficult. Discretization with the forward Euler method is instead often used with gradient descent techniques but has the disadvantage of being computationally expensive. Moreover, the lack of precision of discretized simulations can create mismatches between the simulated models and analog neuromorphic hardware. In this work, we propose a new exact error-backpropagation through spikes method for SNNs, extending Fast \& Deep to multiple spikes per neuron. We show that our method can be efficiently implemented on GPUs in a fully event-based manner, making it fast to compute and precise enough for analog neuromorphic hardware. Compared to the original Fast \& Deep and the current state-of-the-art event-based gradient-descent algorithms, we demonstrate increased performance on several benchmark datasets with both feedforward and convolutional SNNs. In particular, we show that multi-spike SNNs can have advantages over single-spike networks in terms of convergence, sparsity, classification latency and sensitivity to the dead neuron problem.
translated by 谷歌翻译
由于它们的低能量消耗,对神经形态计算设备上的尖刺神经网络(SNNS)越来越兴趣。最近的进展使培训SNNS在精度方面开始与传统人工神经网络(ANNS)进行竞争,同时在神经胸壁上运行时的节能。然而,培训SNNS的过程仍然基于最初为ANNS开发的密集的张量操作,这不利用SNN的时空稀疏性质。我们在这里介绍第一稀疏SNN BackPropagation算法,该算法与最新的现有技术实现相同或更好的准确性,同时显着更快,更高的记忆力。我们展示了我们对不同复杂性(时尚 - MNIST,神经影像学 - MNIST和Spiking Heidelberg数字的真实数据集的有效性,在不失精度的情况下实现了高达150倍的后向通行证的加速,而不会减少精度。
translated by 谷歌翻译
尖峰神经网络是低功率环境的有效计算模型。基于SPIKE的BP算法和ANN-TO-SNN(ANN2SNN)转换是SNN培训的成功技术。然而,尖峰碱BP训练速度很慢,需要大量的记忆成本。尽管Ann2NN提供了一种培训SNN的低成本方式,但它需要许多推理步骤才能模仿训练有素的ANN以表现良好。在本文中,我们提出了一个snn-to-ang(SNN2ANN)框架,以快速和记忆的方式训练SNN。 SNN2ANN由2个组成部分组成:a)ANN和SNN和B)尖峰映射单元之间的重量共享体系结构。首先,该体系结构在ANN分支上训练重量共享参数,从而快速训练和SNN的记忆成本较低。其次,尖峰映射单元确保ANN的激活值是尖峰特征。结果,可以通过训练ANN分支来优化SNN的分类误差。此外,我们设计了一种自适应阈值调整(ATA)算法来解决嘈杂的尖峰问题。实验结果表明,我们的基于SNN2ANN的模型在基准数据集(CIFAR10,CIFAR100和TININE-IMAGENET)上表现良好。此外,SNN2ANN可以在0.625倍的时间步长,0.377倍训练时间,0.27倍GPU内存成本以及基于SPIKE的BP模型的0.33倍尖峰活动下实现可比精度。
translated by 谷歌翻译
Spiking neural networks (SNNs) are receiving increasing attention due to their low power consumption and strong bio-plausibility. Optimization of SNNs is a challenging task. Two main methods, artificial neural network (ANN)-to-SNN conversion and spike-based backpropagation (BP), both have their advantages and limitations. For ANN-to-SNN conversion, it requires a long inference time to approximate the accuracy of ANN, thus diminishing the benefits of SNN. With spike-based BP, training high-precision SNNs typically consumes dozens of times more computational resources and time than their ANN counterparts. In this paper, we propose a novel SNN training approach that combines the benefits of the two methods. We first train a single-step SNN by approximating the neural potential distribution with random noise, then convert the single-step SNN to a multi-step SNN losslessly. The introduction of Gaussian distributed noise leads to a significant gain in accuracy after conversion. The results show that our method considerably reduces the training and inference times of SNNs while maintaining their high accuracy. Compared to the previous two methods, ours can reduce training time by 65%-75% and achieves more than 100 times faster inference speed. We also argue that the neuron model augmented with noise makes it more bio-plausible.
translated by 谷歌翻译
我们最近提出了S4NN算法,基本上是对多层尖峰神经网络的反向化的适应,该网上网络使用简单的非泄漏整合和火神经元和一种形式称为第一峰值编码的时间编码。通过这种编码方案,每次刺激最多一次都是神经元火灾,但射击令携带信息。这里,我们引入BS4NN,S4NN的修改,其中突触权重被约束为二进制(+1或-1),以便减少存储器(理想情况下,每个突触的一个比特)和计算占地面积。这是使用两组权重完成:首先,通过梯度下降更新的实际重量,并在BackProjagation的后退通行证中使用,其次是在前向传递中使用的迹象。类似的策略已被用于培训(非尖峰)二值化神经网络。主要区别在于BS4NN在时域中操作:尖峰依次繁殖,并且不同的神经元可以在不同时间达到它们的阈值,这增加了计算能力。我们验证了两个流行的基准,Mnist和Fashion-Mnist上的BS4NN,并获得了这种网络的合理精度(分别为97.0%和87.3%),具有可忽略的准确率,具有可忽略的重量率(0.4%和0.7%,分别)。我们还展示了BS4NN优于具有相同架构的简单BNN,在这两个数据集上(分别为0.2%和0.9%),可能是因为它利用时间尺寸。建议的BS4NN的源代码在HTTPS://github.com/srkh/bs4nn上公开可用。
translated by 谷歌翻译
我们提出了一种新的学习算法,使用传统的人工神经网络(ANN)作为代理训练尖刺神经网络(SNN)。我们分别与具有相同网络架构和共享突触权重的集成和火(IF)和Relu神经元进行两次SNN和ANN网络。两个网络的前进通过完全独立。通过假设具有速率编码的神经元作为Relu的近似值,我们将SNN中的SNN的误差进行了回复,以更新共享权重,只需用SNN的ANN最终输出替换ANN最终输出。我们将建议的代理学习应用于深度卷积的SNNS,并在Fahion-Mnist和CiFar10的两个基准数据集上进行评估,分别为94.56%和93.11%的分类准确性。所提出的网络可以优于培训的其他深鼻涕,训练,替代学习,代理梯度学习,或从深处转换。转换的SNNS需要长时间的仿真时间来达到合理的准确性,而我们的代理学习导致高效的SNN,模拟时间较短。
translated by 谷歌翻译
尖峰神经网络(SNN)是第三代人工神经网络,可以在神经形态硬件上实施节能。但是,尖峰的离散传播给坚固且高性能的学习机制带来了重大挑战。大多数现有的作品仅着眼于神经元之间的学习,但忽略了突触之间的影响,从而导致稳健性和准确性丧失。为了解决这个问题,我们通过对突触(APB)(APB)之间的关联可塑性(APB)进行建模,从而提出了一种强大而有效的学习机制。使用提出的APB方法,当其他神经元同时刺激时,同一神经元的突触通过共享因素相互作用。此外,我们提出了一种时空种植和翻转(STCF)方法,以提高网络的概括能力。广泛的实验表明,我们的方法在静态CIFAR-10数据集和神经形态MNIST-DV的最新性能上实现了卓越的性能,通过轻量级卷积网络,CIFAR10-DVS数据集。据我们所知,这是第一次探索突触之间的学习方法和神经形态数据的扩展方法。
translated by 谷歌翻译
我们提出了Memprop,即采用基于梯度的学习来培训完全的申请尖峰神经网络(MSNNS)。我们的方法利用固有的设备动力学来触发自然产生的电压尖峰。这些由回忆动力学发出的尖峰本质上是类似物,因此完全可区分,这消除了尖峰神经网络(SNN)文献中普遍存在的替代梯度方法的需求。回忆性神经网络通常将备忘录集成为映射离线培训网络的突触,或者以其他方式依靠关联学习机制来训练候选神经元的网络。相反,我们直接在循环神经元和突触的模拟香料模型上应用了通过时间(BPTT)训练算法的反向传播。我们的实现是完全的综合性,因为突触重量和尖峰神经元都集成在电阻RAM(RRAM)阵列上,而无需其他电路来实现尖峰动态,例如模数转换器(ADCS)或阈值比较器。结果,高阶电物理效应被充分利用,以在运行时使用磁性神经元的状态驱动动力学。通过朝着非同一梯度的学习迈进,我们在以前报道的几个基准上的轻巧密集的完全MSNN中获得了高度竞争的准确性。
translated by 谷歌翻译
图形卷积网络(GCN)由于学习图信息的显着表示能力而实现了令人印象深刻的性能。但是,GCN在深网上实施时需要昂贵的计算功率,因此很难将其部署在电池供电的设备上。相比之下,执行生物保真推理过程的尖峰神经网络(SNN)提供了节能的神经结构。在这项工作中,我们提出了SpikingGCN,这是一个端到端框架,旨在将GCN的嵌入与SNN的生物层性特征相结合。原始图数据根据图形卷积的合并编码为尖峰列车。我们通过利用与神经元节点结合的完全连接的层来进一步对生物信息处理进行建模。在各种场景(例如引用网络,图像图分类和推荐系统)中,我们的实验结果表明,该方法可以针对最新方法获得竞争性能。此外,我们表明,在神经形态芯片上的SpikingGCN可以将能源效率的明显优势带入图形数据分析中,这表明了其构建环境友好的机器学习模型的巨大潜力。
translated by 谷歌翻译
反向传播算法促进了深度学习的快速发展,但它依赖大量标记的数据,并且人类学习的方式仍然存在很大的差距。人的大脑可以以自组织和无监督的方式迅速学习各种概念知识,这是通过人类大脑中多个学习规则和结构的协调来实现的。依赖峰值的依赖性可塑性(STDP)是大脑中广泛的学习规则,但是单独使用STDP训练的尖峰神经网络效率低下且性能差。在本文中,从短期突触可塑性中汲取灵感,我们设计了一种自适应突触过滤器,并将自适应阈值平衡作为神经元可塑性介绍,以丰富SNN的表示能力。我们还引入了自适应的横向抑制连接,以动态调整尖峰平衡,以帮助网络学习更丰富的功能。为了加速和稳定无监督的尖峰神经网络的训练,我们设计了一个样本的时间批次STDP,该STDP根据多个样本和多个矩来更新重量。我们已经进行了有关MNIST和FashionMnist的实验,并实现了基于STDP的当前无监督的尖峰神经网络的最先进性能。我们的模型在小样本学习中还显示出强烈的优势。
translated by 谷歌翻译
尖峰神经网络(SNN)在各种智能场景中都表现出了出色的功能。大多数现有的训练SNN方法基于突触可塑性的概念。但是,在现实的大脑中学习还利用了神经元的内在非突触机制。生物神经元的尖峰阈值是一种关键的固有神经元特征,在毫秒的时间尺度上表现出丰富的动力学,并已被认为是一种促进神经信息处理的基本机制。在这项研究中,我们开发了一种新型的协同学习方法,该方法同时训练SNN中的突触权重和尖峰阈值。经过突触阈值协同学习(STL-SNN)训练的SNN在各种静态和神经形态数据集上的精度明显高于接受两种突触学习(SL)和阈值学习(TL)的单独学习模型(TL)的SNN。在训练过程中,协同学习方法优化了神经阈值,通过适当的触发速率为网络提供稳定的信号传输。进一步的分析表明,STL-SNN对嘈杂的数据是可靠的,并且对深网结构表现出低的能耗。此外,通过引入广义联合决策框架(JDF),可以进一步提高STL-SNN的性能。总体而言,我们的发现表明,突触和内在的非突触机制之间的生物学上合理的协同作用可能为开发高效的SNN学习方法提供了一种有希望的方法。
translated by 谷歌翻译
大脑中尖刺神经元之间的沟通的事件驱动和稀疏性质对灵活和节能的AI来说具有很大的承诺。学习算法的最新进展已经证明,与标准经常性神经网络相比,可以有效地培训尖刺神经元的复发网络以实现竞争性能。尽管如此,随着这些学习算法使用错误 - 反复通过时间(BPTT),它们遭受了高的内存要求,慢慢训练,并且与在线学习不兼容。这将这些学习算法的应用限制为相对较小的网络和有限的时间序列长度。已经提出了具有较低计算和内存复杂性的BPTT的在线近似(E-PROP,OSTL),但在实践中也遭受内存限制,并且作为近似,不要倾销标准BPTT训练。在这里,我们展示了最近开发的BPTT替代方法,通过时间(FPTT)可以应用于尖峰神经网络。与BPTT不同,FPTT试图最大限度地减少损失的持续动态正常风险。结果,可以以在线方式计算FPTT,并且相对于序列长度具有固定的复杂性。与新型动态尖刺神经元模型结合时,液态常数神经元,我们表明SNNS培训了FPTT优于在线BPTT近似,并在时间分类任务上接近或超过离线BPTT精度。因此,这种方法使得在长期序列中以记忆友好的在线方式训练SNNS并向新颖和复杂的神经架构进行扩展。
translated by 谷歌翻译