Few-shot node classification is tasked to provide accurate predictions for nodes from novel classes with only few representative labeled nodes. This problem has drawn tremendous attention for its projection to prevailing real-world applications, such as product categorization for newly added commodity categories on an E-commerce platform with scarce records or diagnoses for rare diseases on a patient similarity graph. To tackle such challenging label scarcity issues in the non-Euclidean graph domain, meta-learning has become a successful and predominant paradigm. More recently, inspired by the development of graph self-supervised learning, transferring pretrained node embeddings for few-shot node classification could be a promising alternative to meta-learning but remains unexposed. In this work, we empirically demonstrate the potential of an alternative framework, \textit{Transductive Linear Probing}, that transfers pretrained node embeddings, which are learned from graph contrastive learning methods. We further extend the setting of few-shot node classification from standard fully supervised to a more realistic self-supervised setting, where meta-learning methods cannot be easily deployed due to the shortage of supervision from training classes. Surprisingly, even without any ground-truth labels, transductive linear probing with self-supervised graph contrastive pretraining can outperform the state-of-the-art fully supervised meta-learning based methods under the same protocol. We hope this work can shed new light on few-shot node classification problems and foster future research on learning from scarcely labeled instances on graphs.
translated by 谷歌翻译
图形存在于许多现实世界中的应用中,例如财务欺诈检测,商业建议和社交网络分析。但是,鉴于图形注释或标记的高成本,我们面临严重的图形标签 - 刻度问题,即,图可能具有一些标记的节点。这样一个问题的一个例子是所谓的\ textit {少数弹性节点分类}。该问题的主要方法均依靠\ textit {情节元学习}。在这项工作中,我们通过提出一个基本问题来挑战现状,元学习是否是对几个弹性节点分类任务的必要条件。我们在标准的几杆节点分类设置下提出了一个新的简单框架,作为学习有效图形编码器的元学习的替代方法。该框架由有监督的图形对比学习以及新颖的数据增强,子图编码和图形上的多尺度对比度组成。在三个基准数据集(Corafull,Reddit,OGBN)上进行的广泛实验表明,新框架显着胜过基于最先进的元学习方法。
translated by 谷歌翻译
节点分类在各种图形挖掘任务中至关重要。在实践中,实际图通常遵循长尾分布,其中大量类仅由有限的标记节点组成。尽管图神经网络(GNN)在节点分类方面取得了显着改善,但在这种情况下,它们的性能大大降低。主要原因可以归因于由于元任务中不同节点/类分布引起的任务差异(即节点级别和类级别的方差)引起的任务差异,因此元素训练和元检验之间存在巨大的概括差距。因此,为了有效地减轻任务差异的影响,我们在少数弹出的学习设置下提出了一个任务自适应的节点分类框架。具体而言,我们首先在具有丰富标记节点的类中积累了元知识。然后,我们通过提出的任务自适应模块将这些知识转移到具有有限标记的节点的类别中。特别是,为了适应元任务之间的不同节点/类分布,我们建议三个基本模块以执行\ emph {node-level},\ emph {class-level}和\ emph {task-emph {task-level}适应元任务分别。这样,我们的框架可以对不同的元任务进行适应,从而提高元测试任务上的模型概括性能。在四个普遍的节点分类数据集上进行了广泛的实验,证明了我们的框架优于最先进的基线。我们的代码可在https://github.com/songw-sw/tent上提供。
translated by 谷歌翻译
图形广泛用于建模数据的关系结构,并且图形机器学习(ML)的研究具有广泛的应用,从分子图中的药物设计到社交网络中的友谊建议。图形ML的流行方法通常需要大量的标记实例来实现令人满意的结果,这在现实世界中通常是不可行的,因为在图形上标记了新出现的概念的数据(例如,在图形上的新分类)是有限的。尽管已将元学习应用于不同的几个图形学习问题,但大多数现有的努力主要假设所有所见类别的数据都是金标记的,而当这些方法弱标记时,这些方法可能会失去疗效严重的标签噪声。因此,我们旨在研究一个新的问题,即弱监督图元学习,以改善知识转移的模型鲁棒性。为了实现这一目标,我们提出了一个新的图形学习框架 - 本文中的图形幻觉网络(Meta-GHN)。基于一种新的鲁棒性增强的情节训练,元研究将从弱标记的数据中幻觉清洁节点表示,并提取高度可转移的元知识,这使该模型能够快速适应不见了的任务,几乎没有标记的实例。广泛的实验表明,元基因与现有图形学习研究的优越性有关弱监督的少数弹性分类的任务。
translated by 谷歌翻译
逐步学习新课程的能力对于所有现实世界的人工智能系统至关重要。像社交媒体,推荐系统,电子商务平台等的大部分高冲击应用都可以由图形模型表示。在本文中,我们调查了挑战但实际问题,图表几次拍摄的类增量(图形FCL)问题,其中图形模型是任务,以对新遇到的类和以前学习的类进行分类。为此目的,我们通过从基类循环地采样任务来提出图形伪增量学习范例,以便为我们的模型产生任意数量的培训集,以练习增量学习技能。此外,我们设计了一种基于分层的图形元学习框架,Hag-Meta。我们介绍了一个任务敏感的常规程序,从任务级关注和节点类原型计算,以缓解到新颖或基本类上的过度拟合。为了采用拓扑知识,我们添加了一个节点级注意模块来调整原型表示。我们的模型不仅达到了旧知识整合的更大稳定性,而且还可以获得对具有非常有限的数据样本的新知识的有利适应性。在三个现实世界数据集上进行广泛的实验,包括亚马逊服装,Reddit和DBLP,表明我们的框架与基线和其他相关最先进的方法相比,展示了显着的优势。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
图级表示在各种现实世界中至关重要,例如预测分子的特性。但是实际上,精确的图表注释通常非常昂贵且耗时。为了解决这个问题,图形对比学习构造实例歧视任务,将正面对(同一图的增强对)汇总在一起,并将负面对(不同图的增强对)推开,以进行无监督的表示。但是,由于为了查询,其负面因素是从所有图中均匀抽样的,因此现有方法遭受关键采样偏置问题的损失,即,否定物可能与查询具有相同的语义结构,从而导致性能降解。为了减轻这种采样偏见问题,在本文中,我们提出了一种典型的图形对比度学习(PGCL)方法。具体而言,PGCL通过将语义相似的图形群群归为同一组的群集数据的基础语义结构,并同时鼓励聚类的一致性,以实现同一图的不同增强。然后给出查询,它通过从与查询群集不同的群集中绘制图形进行负采样,从而确保查询及其阴性样本之间的语义差异。此外,对于查询,PGCL根据其原型(集群质心)和查询原型之间的距离进一步重新重新重新重新重新享受其负样本,从而使那些具有中等原型距离的负面因素具有相对较大的重量。事实证明,这种重新加权策略比统一抽样更有效。各种图基准的实验结果证明了我们的PGCL比最新方法的优势。代码可在https://github.com/ha-lins/pgcl上公开获取。
translated by 谷歌翻译
图表分类是一种非常有影响力的任务,在多数世界应用中起着至关重要的作用,例如分子性质预测和蛋白质函数预测。以有限标记的图表处理新课程,几次拍摄图形分类已成为一座桥梁现有图分类解决方案与实际使用。这项工作探讨了基于度量的元学习的潜力,用于解决少量图形分类。我们突出了考虑解决方案结构特征的重要性,并提出了一种明确考虑全球结构的新框架和输入图的局部结构。在两个数据集,Chembl和三角形上测试了名为SMF-GIN的GIN的实施,其中广泛的实验验证了所提出的方法的有效性。 ChemBl构造成填补缺乏几次拍摄图形分类评估的大规模基准的差距,与SMF-GIN的实施一起释放:https://github.com/jiangshunyu/smf-ing。
translated by 谷歌翻译
灵感来自深度学习的广泛成功,已经提出了图表神经网络(GNNS)来学习表达节点表示,并在各种图形学习任务中表现出有希望的性能。然而,现有的努力主要集中在提供相对丰富的金色标记节点的传统半监督设置。虽然数据标签是难以忍受的事实令人生畏的事实并且需要强化领域知识,但特别是在考虑图形结构数据的异质性时,它通常是不切实际的。在几次半监督的环境下,大多数现有GNN的性能不可避免地受到过度装备和过天际问题的破坏,在很大程度上由于标记数据的短缺。在本文中,我们提出了一种配备有新型元学习算法的解耦的网络架构来解决这个问题。从本质上讲,我们的框架META-PN通过META学习的标签传播策略在未标记节点上乘坐高质量的伪标签,这有效增强了稀缺标记的数据,同时在培训期间启用大型接受领域。广泛的实验表明,与各种基准数据集上的现有技术相比,我们的方法提供了简单且实质性的性能。
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes-a crucial component in CL-remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation. CCS CONCEPTS• Computing methodologies → Unsupervised learning; Neural networks; Learning latent representations.
translated by 谷歌翻译
在过去的几年中,图表学习(GRL)是分析图形结构数据的有力策略。最近,GRL方法通过采用用于图像的学习表示形式而开发的自我监督学习方法来显示出令人鼓舞的结果。尽管它们成功了,但现有的GRL方法倾向于忽略图像和图形之间的固有区别,即,假定图像是独立和相同分布的,而图表在数据实例之间显示了关系信息,即节点。为了完全受益于图形结构数据中固有的关系信息,我们提出了一种名为RGRL的新颖GRL方法,该方法从图形本身生成的关系信息中学习。 RGRL学习节点表示形式,使节点之间的关系是增强的不变性,即增强不变的关系,只要保留节点之间的关系,就可以改变节点表示。通过在全球和本地观点中考虑节点之间的关系,RGRL克服了对对比和非对抗性方法的局限性,并实现了两者中最好的。在各种下游任务上对十四个基准数据集进行了广泛的实验,证明了RGRL优于最先进的基线。 RGRL的源代码可在https://github.com/namkyeong/rgrl上获得。
translated by 谷歌翻译
众所周知,图形神经网络(GNN)的成功高度依赖于丰富的人类通知数据,这在实践中努力获得,并且并非总是可用的。当只有少数标记的节点可用时,如何开发高效的GNN仍在研究。尽管已证明自我训练对于半监督学习具有强大的功能,但其在图形结构数据上的应用可能会失败,因为(1)不利用较大的接收场来捕获远程节点相互作用,这加剧了传播功能的难度 - 标记节点到未标记节点的标签模式; (2)有限的标记数据使得在不同节点类别中学习良好的分离决策边界而不明确捕获基本的语义结构,这是一项挑战。为了解决捕获信息丰富的结构和语义知识的挑战,我们提出了一个新的图数据增强框架,AGST(增强图自训练),该框架由两个新的(即结构和语义)增强模块构建。 GST骨干。在这项工作中,我们研究了这个新颖的框架是否可以学习具有极有限标记节点的有效图预测模型。在有限标记节点数据的不同情况下,我们对半监督节点分类进行全面评估。实验结果证明了新的数据增强框架对节点分类的独特贡献,几乎没有标记的数据。
translated by 谷歌翻译
Graph structure learning (GSL), which aims to learn the adjacency matrix for graph neural networks (GNNs), has shown great potential in boosting the performance of GNNs. Most existing GSL works apply a joint learning framework where the estimated adjacency matrix and GNN parameters are optimized for downstream tasks. However, as GSL is essentially a link prediction task, whose goal may largely differ from the goal of the downstream task. The inconsistency of these two goals limits the GSL methods to learn the potential optimal graph structure. Moreover, the joint learning framework suffers from scalability issues in terms of time and space during the process of estimation and optimization of the adjacency matrix. To mitigate these issues, we propose a graph structure refinement (GSR) framework with a pretrain-finetune pipeline. Specifically, The pre-training phase aims to comprehensively estimate the underlying graph structure by a multi-view contrastive learning framework with both intra- and inter-view link prediction tasks. Then, the graph structure is refined by adding and removing edges according to the edge probabilities estimated by the pre-trained model. Finally, the fine-tuning GNN is initialized by the pre-trained model and optimized toward downstream tasks. With the refined graph structure remaining static in the fine-tuning space, GSR avoids estimating and optimizing graph structure in the fine-tuning phase which enjoys great scalability and efficiency. Moreover, the fine-tuning GNN is boosted by both migrating knowledge and refining graphs. Extensive experiments are conducted to evaluate the effectiveness (best performance on six benchmark datasets), efficiency, and scalability (13.8x faster using 32.8% GPU memory compared to the best GSL baseline on Cora) of the proposed model.
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译
由顺序训练和元训练阶段组成的两阶段训练范式已广泛用于当前的几次学习(FSL)研究。这些方法中的许多方法都使用自我监督的学习和对比度学习来实现新的最新结果。但是,在FSL培训范式的两个阶段,对比度学习的潜力仍未得到充分利用。在本文中,我们提出了一个新颖的基于学习的框架,该框架将对比度学习无缝地整合到两个阶段中,以提高少量分类的性能。在预训练阶段,我们提出了特征向量与特征映射和特征映射与特征映射的形式的自我监督对比损失,该图形与特征映射使用全局和本地信息来学习良好的初始表示形式。在元训练阶段,我们提出了一种跨视图的情节训练机制,以对同一情节的两个不同视图进行最近的质心分类,并采用基于它们的距离尺度对比度损失。这两种策略迫使模型克服观点之间的偏见并促进表示形式的可转让性。在三个基准数据集上进行的广泛实验表明,我们的方法可以实现竞争成果。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
Graph Contrastive Learning (GCL) has recently drawn much research interest for learning generalizable node representations in a self-supervised manner. In general, the contrastive learning process in GCL is performed on top of the representations learned by a graph neural network (GNN) backbone, which transforms and propagates the node contextual information based on its local neighborhoods. However, nodes sharing similar characteristics may not always be geographically close, which poses a great challenge for unsupervised GCL efforts due to their inherent limitations in capturing such global graph knowledge. In this work, we address their inherent limitations by proposing a simple yet effective framework -- Simple Neural Networks with Structural and Semantic Contrastive Learning} (S^3-CL). Notably, by virtue of the proposed structural and semantic contrastive learning algorithms, even a simple neural network can learn expressive node representations that preserve valuable global structural and semantic patterns. Our experiments demonstrate that the node representations learned by S^3-CL achieve superior performance on different downstream tasks compared with the state-of-the-art unsupervised GCL methods. Implementation and more experimental details are publicly available at \url{https://github.com/kaize0409/S-3-CL.}
translated by 谷歌翻译
Inspired by the impressive success of contrastive learning (CL), a variety of graph augmentation strategies have been employed to learn node representations in a self-supervised manner. Existing methods construct the contrastive samples by adding perturbations to the graph structure or node attributes. Although impressive results are achieved, it is rather blind to the wealth of prior information assumed: with the increase of the perturbation degree applied on the original graph, 1) the similarity between the original graph and the generated augmented graph gradually decreases; 2) the discrimination between all nodes within each augmented view gradually increases. In this paper, we argue that both such prior information can be incorporated (differently) into the contrastive learning paradigm following our general ranking framework. In particular, we first interpret CL as a special case of learning to rank (L2R), which inspires us to leverage the ranking order among positive augmented views. Meanwhile, we introduce a self-ranking paradigm to ensure that the discriminative information among different nodes can be maintained and also be less altered to the perturbations of different degrees. Experiment results on various benchmark datasets verify the effectiveness of our algorithm compared with the supervised and unsupervised models.
translated by 谷歌翻译
在本文中,我们研究了在非全粒图上进行节点表示学习的自我监督学习的问题。现有的自我监督学习方法通​​常假定该图是同质的,其中链接的节点通常属于同一类或具有相似的特征。但是,这种同质性的假设在现实图表中并不总是正确的。我们通过为图神经网络开发脱钩的自我监督学习(DSSL)框架来解决这个问题。 DSSL模仿了节点的生成过程和语义结构的潜在变量建模的链接,该过程将不同邻域之间的不同基础语义解散到自我监督的节点学习过程中。我们的DSSL框架对编码器不可知,不需要预制的增强,因此对不同的图表灵活。为了通过潜在变量有效地优化框架,我们得出了自我监督目标的较低范围的证据,并开发了具有变异推理的可扩展培训算法。我们提供理论分析,以证明DSSL享有更好的下游性能。与竞争性的自我监督学习基线相比,对各种类图基准的广泛实验表明,我们提出的框架可以显着取得更好的性能。
translated by 谷歌翻译