高斯过程状态空间模型通过在转换功能上放置高斯过程来以原则方式捕获复杂的时间依赖性。这些模型具有自然的解释,作为离散的随机微分方程,但困难的长期序列的推断是困难的。快速过渡需要紧密离散化,而慢速转换需要在长副图层上备份梯度。我们提出了一种由多个组件组成的新型高斯过程状态空间架构,每个组件都培训不同的分辨率,以对不同时间尺度进行模拟效果。组合模型允许在自适应刻度上进行时间进行时间,为具有复杂动态的任意长序列提供有效推断。我们在半合成数据和发动机建模任务上基准我们的新方法。在这两个实验中,我们的方法对其最先进的替代品仅比单一时间级运行的最先进的替代品。
translated by 谷歌翻译
我们介绍了一种可扩展的方法来实现高斯工艺推断,它将时空滤波与自然梯度变化推断相结合,导致用于多变量数据的非共轭GP方法,其相对于时间线性缩放。我们的自然梯度方法可以应用并行滤波和平滑,进一步降低时间跨度复杂性在时间步长的对数。我们得出了稀疏近似,该稀疏近似值在减少的空间诱导点上构造一个状态空间模型,并且显示用于可分离的马尔可夫内核,完整和稀疏的情况完全恢复标准变分GP,同时表现出有利的计算特性。为了进一步改善空间缩放,我们提出了一种平均场景假设空间位置之间的独立性,当与稀疏性和平行化连接时,这导致了大规模的时空问题的有效和准确的方法。
translated by 谷歌翻译
非线性状态空间模型是一种强大的工具,可以在复杂时间序列中描述动态结构。在一个流的媒体设置中,当一次处理一个样本的情况下,状态的同时推断及其非线性动力学在实践中提出了重大挑战。我们开发了一个小说在线学习框架,利用变分推理和顺序蒙特卡罗,这使得灵活和准确的贝叶斯联合过滤。我们的方法提供了滤波后的近似,这可以任意地接近针对广泛的动态模型和观察模型的真正滤波分布。具体地,所提出的框架可以使用稀疏高斯过程有效地近似于动态的后验,允许潜在动力学的可解释模型。每个样本的恒定时间复杂性使我们的方法能够适用于在线学习场景,适用于实时应用。
translated by 谷歌翻译
高斯进程(GPS)是通过工程学的社会和自然科学的应用程序学习和统计数据的重要工具。它们构成具有良好校准的不确定性估计的强大的内核非参数方法,然而,由于其立方计算复杂度,从货架上的GP推理程序仅限于具有数千个数据点的数据集。因此,在过去几年中已经开发出许多稀疏的GPS技术。在本文中,我们专注于GP回归任务,并提出了一种基于来自几个本地和相关专家的聚合预测的新方法。因此,专家之间的相关程度可以在独立于完全相关的专家之间变化。考虑到他们的相关性导致了一致的不确定性估算,汇总了专家的个人预测。我们的方法在限制案件中恢复了专家的独立产品,稀疏GP和全GP。呈现的框架可以处理一般的内核函数和多个变量,并且具有时间和空间复杂性,在专家和数据样本的数量中是线性的,这使得我们的方法是高度可扩展的。我们展示了我们提出的方法的卓越性能,这是我们提出的综合性和几个实际数据集的最先进的GP近似方法的卓越性能,以及具有确定性和随机优化的若干现实世界数据集。
translated by 谷歌翻译
最近的机器学习进展已直接从数据中直接提出了对未知连续时间系统动力学的黑盒估计。但是,较早的作品基于近似ODE解决方案或点估计。我们提出了一种新型的贝叶斯非参数模型,该模型使用高斯工艺直接从数据中直接从数据中推断出未知ODE系统的后代。我们通过脱钩的功能采样得出稀疏的变异推断,以表示矢量场后代。我们还引入了一种概率的射击增强,以从任意长的轨迹中有效推断。该方法证明了计算矢量场后代的好处,预测不确定性得分优于多个ODE学习任务的替代方法。
translated by 谷歌翻译
Gaussian process state-space model (GPSSM) is a fully probabilistic state-space model that has attracted much attention over the past decade. However, the outputs of the transition function in the existing GPSSMs are assumed to be independent, meaning that the GPSSMs cannot exploit the inductive biases between different outputs and lose certain model capacities. To address this issue, this paper proposes an output-dependent and more realistic GPSSM by utilizing the well-known, simple yet practical linear model of coregionalization (LMC) framework to represent the output dependency. To jointly learn the output-dependent GPSSM and infer the latent states, we propose a variational sparse GP-based learning method that only gently increases the computational complexity. Experiments on both synthetic and real datasets demonstrate the superiority of the output-dependent GPSSM in terms of learning and inference performance.
translated by 谷歌翻译
神经随机微分方程(NSDES)模拟随机过程作为神经网络的漂移和扩散函数。尽管已知NSDE可以进行准确的预测,但到目前为止,其不确定性定量属性仍未探索。我们报告了经验发现,即从NSDE获得良好的不确定性估计是计算上的过度估计。作为一种补救措施,我们开发了一种计算负担得起的确定性方案,该方案在动力学受NSD管辖时准确地近似过渡内核。我们的方法引入了匹配算法的二维力矩:沿着神经净层和沿时间方向水平的垂直力,这受益于有效近似的原始组合。我们对过渡内核的确定性近似适用于培训和预测。我们在多个实验中观察到,我们方法的不确定性校准质量只有在引入高计算成本后才通过蒙特卡洛采样来匹配。由于确定性培训的数值稳定性,我们的方法还提高了预测准确性。
translated by 谷歌翻译
与高斯过程(GPS)的变异近似通常使用一组诱导点来形成与协方差矩阵的低级别近似值。在这项工作中,我们相反利用了精度矩阵的稀疏近似。我们提出了差异最近的邻居高斯工艺(VNNGP),该过程引入了先验,该过程仅保留在k最近的邻居观测中的相关性,从而诱导稀疏精度结构。使用变分框架,可以将VNNGP的目标分解在观测值和诱导点上,从而以O($ k^3 $)的时间复杂性实现随机优化。因此,我们可以任意扩展诱导点大小,甚至可以在每个观察到的位置放置诱导点。我们通过各种实验将VNNGP与其他可扩展的GP进行比较,并证明VNNGP(1)可以极大地超过低级别方法,而(2)比其他最近的邻居方法较不适合过度拟合。
translated by 谷歌翻译
本论文主要涉及解决深层(时间)高斯过程(DGP)回归问题的状态空间方法。更具体地,我们代表DGP作为分层组合的随机微分方程(SDES),并且我们通过使用状态空间过滤和平滑方法来解决DGP回归问题。由此产生的状态空间DGP(SS-DGP)模型生成丰富的电视等级,与建模许多不规则信号/功能兼容。此外,由于他们的马尔可道结构,通过使用贝叶斯滤波和平滑方法可以有效地解决SS-DGPS回归问题。本论文的第二次贡献是我们通过使用泰勒力矩膨胀(TME)方法来解决连续离散高斯滤波和平滑问题。这诱导了一类滤波器和SmooThers,其可以渐近地精确地预测随机微分方程(SDES)解决方案的平均值和协方差。此外,TME方法和TME过滤器和SmoOthers兼容模拟SS-DGP并解决其回归问题。最后,本文具有多种状态 - 空间(深)GPS的应用。这些应用主要包括(i)来自部分观察到的轨迹的SDES的未知漂移功能和信号的光谱 - 时间特征估计。
translated by 谷歌翻译
高斯流程(GPS)实际应用的主要挑战是选择适当的协方差函数。 GPS的移动平均值或过程卷积的构建可以提供一些额外的灵活性,但仍需要选择合适的平滑核,这是非平凡的。以前的方法通过在平滑内核上使用GP先验,并通过扩展协方差来构建协方差函数,以绕过预先指定它的需求。但是,这样的模型在几种方面受到限制:它们仅限于单维输入,例如时间;它们仅允许对单个输出进行建模,并且由于推理并不简单,因此不会扩展到大型数据集。在本文中,我们引入了GPS的非参数过程卷积公式,该公式通过使用基于Matheron规则的功能采样方法来减轻这些弱点,以使用诱导变量的间域间采样进行快速采样。此外,我们提出了这些非参数卷积的组成,可作为经典深度GP模型的替代方案,并允许从数据中推断中间层的协方差函数。我们测试了单个输出GP,多个输出GPS和DEEP GPS在基准测试上的模型性能,并发现在许多情况下,我们的方法可以提供比标准GP模型的改进。
translated by 谷歌翻译
本文提出了一种有效的变分推导框架,用于导出结构化高斯进程回归网络(SGPRN)模型的系列。关键的想法是将辅助诱导变量合并到潜在函数中,并共同处理诱导变量和超参数的分布作为变分参数。然后,我们提出了结构化可变分布和边缘化潜变量,这使得可分解的变分性下限并导致随机优化。我们推断方法能够建模数据,其中输出不共享具有与输入和输出大小无关的计算复杂性的公共输入集,因此容易处理具有缺失值的数据集。我们说明了我们对合成数据和真实数据集的方法的性能,并显示我们的模型通常提供比最先进的数据缺失数据的更好的估算结果。我们还提供了一种可视化方法,用于电职业学数据的输出中的输出的时变相关性,并且这些估计提供了了解神经群体动态的洞察力。
translated by 谷歌翻译
我们制定自然梯度变推理(VI),期望传播(EP),和后线性化(PL)作为牛顿法用于优化贝叶斯后验分布的参数扩展。这种观点明确地把数值优化框架下的推理算法。我们表明,通用近似牛顿法从优化文献,即高斯 - 牛顿和准牛顿方法(例如,该BFGS算法),仍然是这种“贝叶斯牛顿”框架下有效。这导致了一套这些都保证以产生半正定协方差矩阵,不像标准VI和EP新颖算法。我们统一的观点提供了新的见解各种推理方案之间的连接。所有提出的方法适用于具有高斯事先和非共轭的可能性,这是我们与(疏)高斯过程和状态空间模型展示任何模型。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
稀疏变分高斯工艺(SVGP)方法是由于其计算效益的非共轭高斯工艺推论的常见选择。在本文中,我们通过使用双重参数化来提高其计算效率,其中每个数据示例被分配双参数,类似于期望传播中使用的站点参数。我们使用自然梯度下降的双重参数化速度推断,并提供了较小的证据,用于近似参数学习。该方法具有与当前SVGP方法相同的内存成本,但它更快,更准确。
translated by 谷歌翻译
隐式过程(IPS)代表一个灵活的框架,可用于描述各种模型,从贝叶斯神经网络,神经抽样器和数据生成器到许多其他模型。 IP还允许在功能空间上进行大致推断。公式的这种变化解决了参数空间的固有退化问题近似推断,即参数数量及其在大型模型中的强大依赖性。为此,文献中先前的作品试图采用IPS来设置先验并近似产生的后部。但是,这被证明是一项具有挑战性的任务。现有的方法可以调整先前的IP导致高斯预测分布,该分布未能捕获重要的数据模式。相比之下,通过使用另一个IP近似后验过程产生灵活预测分布的方法不能将先前的IP调整到观察到的数据中。我们在这里建议第一个可以实现这两个目标的方法。为此,我们依赖于先前IP的诱导点表示,就像在稀疏高斯过程中所做的那样。结果是一种可扩展的方法,用于与IP的近似推断,可以将先前的IP参数调整到数据中,并提供准确的非高斯预测分布。
translated by 谷歌翻译
动态系统的建模和仿真是许多控制方法的必要步骤。使用基于参数的基于参数的技术来建模现代系统,例如软机器人或人机交互,由于系统动态的复杂性,通常是挑战甚至不可行的。相比之下,数据驱动方法只需要最少的先验知识和规模,并以系统的复杂性规模。特别地,高斯过程动态模型(GPDMS)为复杂动态的建模提供了非常有前途的结果。然而,这些GP模型的控制特性刚刚稀疏地研究,这导致了建模和控制方案中的“黑箱”处理。此外,GPDMS对预测目的的采样,尊重其非参数性的非公平性,使得理论分析具有挑战性。在本文中,我们呈现近似的GPDM,它是马尔可夫的并分析它们的控制理论特性。其中,分析了近似的误差,提供了轨迹的界限条件。结果用数字示例说明,该数值示例显示近似模型的功率,而计算时间显着降低。
translated by 谷歌翻译
我们提出了一种在线状态估计和参数学习中的变异方法(SSMS),这是一种无处不在的序列数据的潜在变量模型。根据标准批处理变异技术,我们使用随机梯度同时优化对数模型参数的对数证据的下限和状态后分布的变异近似。但是,与现有方法不同,我们的方法能够完全在线运作,因此,尽管联合后分布的维度越来越不断增长,但在合并后不需要重新审视,并且在每个时间步骤中的更新成本保持恒定国家。这是通过利用该联合后验分布及其变异近似的向后分解,并与贝尔曼型递归相结合的证据下限及其梯度来实现。我们在几个示例中证明了该方法的性能,包括高维SSM和顺序变异自动编码器。
translated by 谷歌翻译
贝叶斯后期和模型证据的计算通常需要数值整合。贝叶斯正交(BQ)是一种基于替代模型的数值整合方法,能够具有出色的样品效率,但其缺乏并行化阻碍了其实际应用。在这项工作中,我们提出了一种并行的(批次)BQ方法,该方法采用了核正素的技术,该技术具有证明是指数的收敛速率。另外,与嵌套采样一样,我们的方法允许同时推断后期和模型证据。重新选择了来自BQ替代模型的样品,通过内核重组算法获得一组稀疏的样品,需要可忽略的额外时间来增加批处理大小。从经验上讲,我们发现我们的方法显着优于在包括锂离子电池分析在内的各种现实世界数据集中,最先进的BQ技术和嵌套采样的采样效率。
translated by 谷歌翻译
The kernel function and its hyperparameters are the central model selection choice in a Gaussian proces (Rasmussen and Williams, 2006). Typically, the hyperparameters of the kernel are chosen by maximising the marginal likelihood, an approach known as Type-II maximum likelihood (ML-II). However, ML-II does not account for hyperparameter uncertainty, and it is well-known that this can lead to severely biased estimates and an underestimation of predictive uncertainty. While there are several works which employ a fully Bayesian characterisation of GPs, relatively few propose such approaches for the sparse GPs paradigm. In this work we propose an algorithm for sparse Gaussian process regression which leverages MCMC to sample from the hyperparameter posterior within the variational inducing point framework of Titsias (2009). This work is closely related to Hensman et al. (2015b) but side-steps the need to sample the inducing points, thereby significantly improving sampling efficiency in the Gaussian likelihood case. We compare this scheme against natural baselines in literature along with stochastic variational GPs (SVGPs) along with an extensive computational analysis.
translated by 谷歌翻译
隐式过程(IP)是高斯过程(GPS)的概括。 IP可能缺乏封闭形式的表达,但很容易采样。例子包括贝叶斯神经网络或神经抽样器。 IP可以用作功能的先验,从而产生具有良好预测不确定性估计值的灵活模型。基于IP的方法通常进行函数空间近似推断,从而克服了参数空间近似推断的一些困难。然而,所采用的近似值通常会限制最终模型的表现力,结果是\ emph {e.g。},在高斯预测分布中,这可能是限制的。我们在这里提出了IPS的多层概括,称为“深层隐式”过程(DVIP)。这种概括与GPS上的深GPS相似,但是由于使用IPs作为潜在函数的先前分布,因此更灵活。我们描述了用于训练DVIP的可扩展变异推理算法,并表明它的表现优于先前的基于IP的方法和深度GPS。我们通过广泛的回归和分类实验来支持这些主张。我们还在大型数据集上评估了DVIP,最多可达数百万个数据实例,以说明其良好的可扩展性和性能。
translated by 谷歌翻译