由于其便利性,使用第三方提供的预培训模型变得越来越普遍。然而,与此同时,这些模型可能容易受到中毒和逃避攻击的影响。我们引入了一个算法框架,当防御者无法获得清洁数据时,可以在预训练的模型中减轻潜在的安全漏洞。框架从给定的预训练模型进行了反向工程。然后,可以将所得的合成样品用作替代干净的数据以执行各种防御措施。我们考虑两种重要的攻击场景 - 后门攻击和逃避攻击 - 以展示合成样本的实用性。对于这两次攻击,我们表明,当提供我们的合成数据时,最新的防御能力的性能相当甚至比提供相同数量的清洁数据时的情况相当甚至更好。
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
视觉变压器(VITS)具有与卷积神经网络相比,具有较小的感应偏置的根本不同的结构。随着绩效的提高,VIT的安全性和鲁棒性也非常重要。与许多最近利用VIT反对对抗性例子的鲁棒性的作品相反,本文调查了代表性的病因攻击,即后门。我们首先检查了VIT对各种后门攻击的脆弱性,发现VIT也很容易受到现有攻击的影响。但是,我们观察到,VIT的清洁数据准确性和后门攻击成功率在位置编码之前对补丁转换做出了明显的反应。然后,根据这一发现,我们为VIT提出了一种通过补丁处理来捍卫基于补丁的触发后门攻击的有效方法。在包括CIFAR10,GTSRB和Tinyimagenet在内的几个基准数据集上评估了这些表演,这些数据表明,该拟议的新颖防御在减轻VIT的后门攻击方面非常成功。据我们所知,本文提出了第一个防御性策略,该策略利用了反对后门攻击的VIT的独特特征。
translated by 谷歌翻译
Backdoor attacks represent one of the major threats to machine learning models. Various efforts have been made to mitigate backdoors. However, existing defenses have become increasingly complex and often require high computational resources or may also jeopardize models' utility. In this work, we show that fine-tuning, one of the most common and easy-to-adopt machine learning training operations, can effectively remove backdoors from machine learning models while maintaining high model utility. Extensive experiments over three machine learning paradigms show that fine-tuning and our newly proposed super-fine-tuning achieve strong defense performance. Furthermore, we coin a new term, namely backdoor sequela, to measure the changes in model vulnerabilities to other attacks before and after the backdoor has been removed. Empirical evaluation shows that, compared to other defense methods, super-fine-tuning leaves limited backdoor sequela. We hope our results can help machine learning model owners better protect their models from backdoor threats. Also, it calls for the design of more advanced attacks in order to comprehensively assess machine learning models' backdoor vulnerabilities.
translated by 谷歌翻译
最近,已经表明,自然语言处理(NLP)模型容易受到一种称为后门攻击的安全威胁,它利用“后门触发器”范例误导模型。最威胁的后门攻击是隐身的后门,它将触发器定义为文本样式或句法。虽然他们已经取得了令人难以置信的高攻击成功率(ASR),但我们发现为ASR的主要因素贡献不是“后门触发”范式。因此,当作为后门攻击分类时,这些隐身后门攻击的能力大得多。因此,为了评估后门攻击的真正攻击力,我们提出了一种称为攻击成功率差异(ASRD)的新度量,从而测量干净状态和毒药状态模型之间的ASR差异。此外,由于对抗隐蔽的后门攻击的防御,我们提出了触发破坏者,包括两个太简单的技巧,可以有效地防御隐秘的后门攻击。关于文本分类任务的实验表明,我们的方法比对隐身后门攻击的最先进的防御方法实现了更好的性能。
translated by 谷歌翻译
后门攻击已成为深度神经网络(DNN)的主要安全威胁。虽然现有的防御方法在检测或擦除后以后展示了有希望的结果,但仍然尚不清楚是否可以设计强大的培训方法,以防止后门触发器首先注入训练的模型。在本文中,我们介绍了\ emph {反后门学习}的概念,旨在培训\ emph {Clean}模型给出了后门中毒数据。我们将整体学习过程框架作为学习\ emph {clean}和\ emph {backdoor}部分的双重任务。从这种观点来看,我们确定了两个后门攻击的固有特征,因为他们的弱点2)后门任务与特定类(后门目标类)相关联。根据这两个弱点,我们提出了一般学习计划,反后门学习(ABL),在培训期间自动防止后门攻击。 ABL引入了标准培训的两级\ EMPH {梯度上升}机制,帮助分离早期训练阶段的后台示例,2)在后续训练阶段中断后门示例和目标类之间的相关性。通过对多个基准数据集的广泛实验,针对10个最先进的攻击,我们经验证明,后卫中毒数据上的ABL培训模型实现了与纯净清洁数据训练的相同性能。代码可用于\ url {https:/github.com/boylyg/abl}。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
机器学习(ML)已将自身驾驶到认证系统的自主驱动范围的各种关键应用的基石。然而,随着机器学习模型的增加,已经出现了多次攻击。一类这样的攻击正在培训时间攻击,由此对手在机器学习模型培训之前或期间执行他们的攻击。在这项工作中,我们提出了一种对基于计算机视觉的机器学习模型的新培训时间攻击,即模型劫持攻击。对手旨在劫持目标模型,而不是模特所有者注意到的原始任务。模型劫持可能会导致问责制和安全风险,因为可以将劫持型号所有者构成,以便拥有其型号提供非法或不道德的服务。模型劫持攻击以与现有数据中毒攻击相同的方式启动。然而,模型劫持攻击的一个要求是隐身,即劫持目标模型的数据样本应该类似于模型的原始训练数据集。为此,我们提出了两种不同的模型劫持攻击,即Chameleon和不良变色龙,基于新颖的编码器解码器样式ML模型,即Camouflager。我们的评价表明,我们的模型劫持攻击都达到了高攻击成功率,模型实用程序下降了不计。
translated by 谷歌翻译
大量证据表明,深神经网络(DNN)容易受到后门攻击的影响,这激发了后门检测方法的发展。现有的后门检测方法通常是针对具有单个特定类型(例如基于补丁或基于扰动)的后门攻击而定制的。但是,在实践中,对手可能会产生多种类型的后门攻击,这挑战了当前的检测策略。基于以下事实:对抗性扰动与触发模式高度相关,本文提出了自适应扰动生成(APG)框架,以通过自适应注射对抗性扰动来检测多种类型的后门攻击。由于不同的触发模式在相同的对抗扰动下显示出高度多样的行为,因此我们首先设计了全球到本地策略,以通过调整攻击的区域和预算来适应多种类型的后门触发器。为了进一步提高扰动注入的效率,我们引入了梯度引导的掩模生成策略,以寻找最佳区域以进行对抗攻击。在多个数据集(CIFAR-10,GTSRB,Tiny-Imagenet)上进行的广泛实验表明,我们的方法以大幅度优于最先进的基线(+12%)。
translated by 谷歌翻译
本文提出了针对回顾性神经网络(Badnets)的新型两级防御(NNOCULICULE),该案例在响应该字段中遇到的回溯测试输入,修复了预部署和在线的BADNET。在预部署阶段,NNICULICULE与清洁验证输入的随机扰动进行检测,以部分减少后门的对抗影响。部署后,NNOCULICULE通过在原始和预先部署修补网络之间录制分歧来检测和隔离测试输入。然后培训Constcan以学习清洁验证和隔离输入之间的转换;即,它学会添加触发器来清洁验证图像。回顾验证图像以及其正确的标签用于进一步重新培训预修补程序,产生我们的最终防御。关于全面的后门攻击套件的实证评估表明,NNOCLICULE优于所有最先进的防御,以制定限制性假设,并且仅在特定的后门攻击上工作,或者在适应性攻击中失败。相比之下,NNICULICULE使得最小的假设并提供有效的防御,即使在现有防御因攻击者而导致其限制假设而导致的现有防御无效的情况下。
translated by 谷歌翻译
最近的研究表明,尽管在许多现实世界应用上达到了很高的精度,但深度神经网络(DNN)可以被换式:通过将触发的数据样本注入培训数据集中,对手可以将受过训练的模型误导到将任何测试数据分类为将任何测试数据分类为只要提出触发模式,目标类。为了消除此类后门威胁,已经提出了各种方法。特别是,一系列研究旨在净化潜在的损害模型。但是,这项工作的一个主要限制是访问足够的原始培训数据的要求:当可用的培训数据受到限制时,净化性能要差得多。在这项工作中,我们提出了对抗重量掩蔽(AWM),这是一种即使在单一设置中也能擦除神经后门的新颖方法。我们方法背后的关键思想是将其提出为最小最大优化问题:首先,对抗恢复触发模式,然后(软)掩盖对恢复模式敏感的网络权重。对几个基准数据集的全面评估表明,AWM在很大程度上可以改善对各种可用培训数据集大小的其他最先进方法的纯化效果。
translated by 谷歌翻译
已知深层神经网络(DNN)容易受到后门攻击和对抗攻击的影响。在文献中,这两种攻击通常被视为明显的问题并分别解决,因为它们分别属于训练时间和推理时间攻击。但是,在本文中,我们发现它们之间有一个有趣的联系:对于具有后门种植的模型,我们观察到其对抗性示例具有与触发样品相似的行为,即都激活了同一DNN神经元的子集。这表明将后门种植到模型中会严重影响模型的对抗性例子。基于这一观察结果,我们设计了一种新的对抗性微调(AFT)算法,以防止后门攻击。我们从经验上表明,在5次最先进的后门攻击中,我们的船尾可以有效地擦除后门触发器,而无需在干净的样品上明显的性能降解,并显着优于现有的防御方法。
translated by 谷歌翻译
Open software supply chain attacks, once successful, can exact heavy costs in mission-critical applications. As open-source ecosystems for deep learning flourish and become increasingly universal, they present attackers previously unexplored avenues to code-inject malicious backdoors in deep neural network models. This paper proposes Flareon, a small, stealthy, seemingly harmless code modification that specifically targets the data augmentation pipeline with motion-based triggers. Flareon neither alters ground-truth labels, nor modifies the training loss objective, nor does it assume prior knowledge of the victim model architecture, training data, and training hyperparameters. Yet, it has a surprisingly large ramification on training -- models trained under Flareon learn powerful target-conditional (or "any2any") backdoors. The resulting models can exhibit high attack success rates for any target choices and better clean accuracies than backdoor attacks that not only seize greater control, but also assume more restrictive attack capabilities. We also demonstrate the effectiveness of Flareon against recent defenses. Flareon is fully open-source and available online to the deep learning community: https://github.com/lafeat/flareon.
translated by 谷歌翻译
计算能力和大型培训数据集的可用性增加,机器学习的成功助长了。假设它充分代表了在测试时遇到的数据,则使用培训数据来学习新模型或更新现有模型。这种假设受到中毒威胁的挑战,这种攻击会操纵训练数据,以损害模型在测试时的表现。尽管中毒已被认为是行业应用中的相关威胁,到目前为止,已经提出了各种不同的攻击和防御措施,但对该领域的完整系统化和批判性审查仍然缺失。在这项调查中,我们在机器学习中提供了中毒攻击和防御措施的全面系统化,审查了过去15年中该领域发表的100多篇论文。我们首先对当前的威胁模型和攻击进行分类,然后相应地组织现有防御。虽然我们主要关注计算机视觉应用程序,但我们认为我们的系统化还包括其他数据模式的最新攻击和防御。最后,我们讨论了中毒研究的现有资源,并阐明了当前的局限性和该研究领域的开放研究问题。
translated by 谷歌翻译
Backdoor attacks have emerged as one of the major security threats to deep learning models as they can easily control the model's test-time predictions by pre-injecting a backdoor trigger into the model at training time. While backdoor attacks have been extensively studied on images, few works have investigated the threat of backdoor attacks on time series data. To fill this gap, in this paper we present a novel generative approach for time series backdoor attacks against deep learning based time series classifiers. Backdoor attacks have two main goals: high stealthiness and high attack success rate. We find that, compared to images, it can be more challenging to achieve the two goals on time series. This is because time series have fewer input dimensions and lower degrees of freedom, making it hard to achieve a high attack success rate without compromising stealthiness. Our generative approach addresses this challenge by generating trigger patterns that are as realistic as real-time series patterns while achieving a high attack success rate without causing a significant drop in clean accuracy. We also show that our proposed attack is resistant to potential backdoor defenses. Furthermore, we propose a novel universal generator that can poison any type of time series with a single generator that allows universal attacks without the need to fine-tune the generative model for new time series datasets.
translated by 谷歌翻译
后门攻击已被证明是对深度学习模型的严重安全威胁,并且检测给定模型是否已成为后门成为至关重要的任务。现有的防御措施主要建立在观察到后门触发器通常尺寸很小或仅影响几个神经元激活的观察结果。但是,在许多情况下,尤其是对于高级后门攻击,违反了上述观察结果,阻碍了现有防御的性能和适用性。在本文中,我们提出了基于新观察的后门防御范围。也就是说,有效的后门攻击通常需要对中毒训练样本的高预测置信度,以确保训练有素的模型具有很高的可能性。基于此观察结果,Dtinspector首先学习一个可以改变最高信心数据的预测的补丁,然后通过检查在低信心数据上应用学习补丁后检查预测变化的比率来决定后门的存在。对五次后门攻击,四个数据集和三种高级攻击类型的广泛评估证明了拟议防御的有效性。
translated by 谷歌翻译
As a critical threat to deep neural networks (DNNs), backdoor attacks can be categorized into two types, i.e., source-agnostic backdoor attacks (SABAs) and source-specific backdoor attacks (SSBAs). Compared to traditional SABAs, SSBAs are more advanced in that they have superior stealthier in bypassing mainstream countermeasures that are effective against SABAs. Nonetheless, existing SSBAs suffer from two major limitations. First, they can hardly achieve a good trade-off between ASR (attack success rate) and FPR (false positive rate). Besides, they can be effectively detected by the state-of-the-art (SOTA) countermeasures (e.g., SCAn). To address the limitations above, we propose a new class of viable source-specific backdoor attacks, coined as CASSOCK. Our key insight is that trigger designs when creating poisoned data and cover data in SSBAs play a crucial role in demonstrating a viable source-specific attack, which has not been considered by existing SSBAs. With this insight, we focus on trigger transparency and content when crafting triggers for poisoned dataset where a sample has an attacker-targeted label and cover dataset where a sample has a ground-truth label. Specifically, we implement $CASSOCK_{Trans}$ and $CASSOCK_{Cont}$. While both they are orthogonal, they are complementary to each other, generating a more powerful attack, called $CASSOCK_{Comp}$, with further improved attack performance and stealthiness. We perform a comprehensive evaluation of the three $CASSOCK$-based attacks on four popular datasets and three SOTA defenses. Compared with a representative SSBA as a baseline ($SSBA_{Base}$), $CASSOCK$-based attacks have significantly advanced the attack performance, i.e., higher ASR and lower FPR with comparable CDA (clean data accuracy). Besides, $CASSOCK$-based attacks have effectively bypassed the SOTA defenses, and $SSBA_{Base}$ cannot.
translated by 谷歌翻译
This paper asks the intriguing question: is it possible to exploit neural architecture search (NAS) as a new attack vector to launch previously improbable attacks? Specifically, we present EVAS, a new attack that leverages NAS to find neural architectures with inherent backdoors and exploits such vulnerability using input-aware triggers. Compared with existing attacks, EVAS demonstrates many interesting properties: (i) it does not require polluting training data or perturbing model parameters; (ii) it is agnostic to downstream fine-tuning or even re-training from scratch; (iii) it naturally evades defenses that rely on inspecting model parameters or training data. With extensive evaluation on benchmark datasets, we show that EVAS features high evasiveness, transferability, and robustness, thereby expanding the adversary's design spectrum. We further characterize the mechanisms underlying EVAS, which are possibly explainable by architecture-level ``shortcuts'' that recognize trigger patterns. This work raises concerns about the current practice of NAS and points to potential directions to develop effective countermeasures.
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNN)容易受到后门攻击的影响,后门攻击会导致DNN的恶意行为,当时特定的触发器附在输入图像上时。进一步证明,感染的DNN具有一系列通道,与正常通道相比,该通道对后门触发器更敏感。然后,将这些通道修剪可有效缓解后门行为。要定位这些通道,自然要考虑其Lipschitzness,这可以衡量他们对输入上最严重的扰动的敏感性。在这项工作中,我们介绍了一个名为Channel Lipschitz常数(CLC)的新颖概念,该概念定义为从输入图像到每个通道输出的映射的Lipschitz常数。然后,我们提供经验证据,以显示CLC(UCLC)上限与通道激活的触发激活变化之间的强相关性。由于可以从重量矩阵直接计算UCLC,因此我们可以以无数据的方式检测潜在的后门通道,并在感染的DNN上进行简单修剪以修复模型。提出的基于lipschitzness的通道修剪(CLP)方法非常快速,简单,无数据且可靠,可以选择修剪阈值。进行了广泛的实验来评估CLP的效率和有效性,CLP的效率和有效性也可以在主流防御方法中获得最新的结果。源代码可在https://github.com/rkteddy/channel-lipschitzness基于普通范围内获得。
translated by 谷歌翻译
获得训练有素的模型涉及昂贵的数据收集和培训程序,因此该模型是有价值的知识产权。最近的研究表明,即使在没有培训样本,也可以“窃取”部署模型,无法访问模型参数或结构。目前,有一些防御方法可以减轻这种威胁,主要是提高模型窃取的成本。在本文中,我们通过验证可疑模型是否包含对Defender指定的知识{外部特征}来探讨其他角度的防御。具体而言,我们通过用风格的转移回火,嵌入外部特征。然后,我们培训一个元分类器以确定模型是否从受害者中偷走。这种方法是通过了解偷窃模型应该包含受害者模型学习的特征知识的启发。我们在Cifar-10和Imagenet数据集中检查我们的方法。实验结果表明,即使通过多级窃取过程获得被盗模型,我们的方法在同时检测不同类型的模型窃取。再现主要结果的代码可在Github(https://github.com/zlh-thu/stealing验证)上获得。
translated by 谷歌翻译