关于日常概念的常识知识是AI应用程序的重要资产,例如问答和聊天机器人。最近,我们发现对结构化常识性知识库(CSKB)的构建越来越兴趣。人类常识的重要部分是关于不适用于概念的属性,而现有的CSKB仅存储正面陈述。此外,由于CSKB在开放世界的假设下运行,因此缺乏陈述被认为具有未知的真理,而不是无效。本文介绍了实现信息丰富的负相感陈述的不常见框架。给定目标概念,在CSKB中确定了可比较的概念,为此假定局部封闭世界的假设。这样,关于目标概念不存在的可比较概念的积极陈述成为负面陈述候选人的种子。然后,通过信息性审查,修剪和排名大量候选人。内在和外在评估表明,我们的方法明显优于最先进的方法。大量的信息否定数据集被释放为未来研究的资源。
translated by 谷歌翻译
关于概念及其属性的常识知识(CSK)有助于AI应用程序。诸如ConceptNet之类的先前作品已经编译了大型CSK集合。但是,它们的表现力限制在主题性 - 预处理(SPO)的三联元中,对p和o的s和字符串的简单概念。与先前的作品相比,CSK断言具有精致的表现力和更好的精度和回忆。 Ascent ++通过用子组和方面捕获复合概念,以及用语义方面的主张来捕获复合概念。后者对于表达断言和进一步预选赛的时间和空间有效性至关重要。此外,Ascent ++将开放信息提取(OpenIE)与典型性和显着性分数的明智清洁和排名相结合。对于高覆盖范围,我们的方法挖掘到具有广泛的Web内容的大规模爬网C4中。通过人类判断的评估显示了上升++ Kb的卓越质量,以及对QA支持任务的外部评估强调了Ascent ++的好处。可以在https://ascentpp.mpi-inf.mpg.de/上访问Web界面,数据和代码。
translated by 谷歌翻译
关于概念及其属性的常识知识(CSK)对AI应用程序(例如强大的聊天机器人)有用。诸如ConceptNet,Tuplekb和其他人之类的先前作品汇编了大型CSK集合,但在其表现力上限制了主题性主体对象(SPO)三倍(SPO)三元组,其中s和p和Onolithic的简单概念是P和O。这些项目都优先考虑精确精度。或召回,但几乎不能调和这些互补目标。本文介绍了一种称为Ascent的方法,以自动建立一个大规模的CSK断言的知识库(KB),具有高级表现力,并且比先前的作品更好,并且具有更好的精度和回忆。通过捕获子组和方面的复合概念,以及通过语义方面的主张来捕获复合概念,超越了三倍。后者对于表达断言和进一步预选赛的时间和空间有效性很重要。 Ascent使用语言模型将开放信息提取与明智的清洁结合在一起。内在评估显示了上升KB的较高规模和质量,QA支持任务的外部评估强调了上升的好处。可以在https://ascent.mpi-inf.mpg.de/上找到Web界面,数据和代码。
translated by 谷歌翻译
Pre-trained language models, despite their rapid advancements powered by scale, still fall short of robust commonsense capabilities. And yet, scale appears to be the winning recipe; after all, the largest models seem to have acquired the largest amount of commonsense capabilities. Or is it? In this paper, we investigate the possibility of a seemingly impossible match: can smaller language models with dismal commonsense capabilities (i.e., GPT-2), ever win over models that are orders of magnitude larger and better (i.e., GPT-3), if the smaller models are powered with novel commonsense distillation algorithms? The key intellectual question we ask here is whether it is possible, if at all, to design a learning algorithm that does not benefit from scale, yet leads to a competitive level of commonsense acquisition. In this work, we study the generative models of commonsense knowledge, focusing on the task of generating generics, statements of commonsense facts about everyday concepts, e.g., birds can fly. We introduce a novel commonsense distillation framework, I2D2, that loosely follows the Symbolic Knowledge Distillation of West et al. but breaks the dependence on the extreme-scale models as the teacher model by two innovations: (1) the novel adaptation of NeuroLogic Decoding to enhance the generation quality of the weak, off-the-shelf language models, and (2) self-imitation learning to iteratively learn from the model's own enhanced commonsense acquisition capabilities. Empirical results suggest that scale is not the only way, as novel algorithms can be a promising alternative. Moreover, our study leads to a new corpus of generics, Gen-A-Tomic, that is of the largest and highest quality available to date.
translated by 谷歌翻译
预训练的语言模型(PTLM)已显示出在自然语言任务上表现良好。许多先前的作品都以通过知识图(KGS)标记的关系链接的实体的形式利用结构性常识来协助PTLM。检索方法使用kg作为单独的静态模块,该模块限制了覆盖范围,因为kgs包含有限的知识。生成方法训练PTLMS kg三倍以提高获得知识的规模。但是,对符号KG实体的培训限制了其在涉及自然语言文本的任务中的适用性,在这些任务中,它们忽略了整体上下文。为了减轻这种情况,我们提出了一个以句子为条件的常识性上下文化器(COSE-CO)作为输入,以使其在生成与输入文本的整体上下文相关的任务中通常可用。为了训练Cose-Co,我们提出了一个新的数据集,其中包括句子和常识知识对。 COSE-CO推断出的知识是多种多样的,并且包含了基础KG中不存在的新实体。我们增强了在多选质量质量检查和开放式常识性推理任务中产生的知识,从而改善了CSQA,ARC,QASC和OBQA数据集的当前最佳方法。我们还展示了其在改善释义生成任务的基线模型方面的适用性。
translated by 谷歌翻译
Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as "fillin-the-blank" cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-theart pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https: //github.com/facebookresearch/LAMA.
translated by 谷歌翻译
本文介绍了预测关系提取的文本文档的覆盖范围的新任务(重新):该文件是否包含给定实体的许多关系元组?覆盖预测可用于选择具有大型输入基层的知识库建设的最佳文档。为研究这个问题,我们为520个实体提供了31,366个不同文件的数据集。我们分析了文档覆盖的相关性与长度,实体提及频率,alexa等级,语言复杂性和信息检索分数的特征相关。这些特征中的每一个都只有适度的预测力量。我们采用方法将具有统计模型的功能相结合,如TF-IDF和BERT语言模型。该模型结合特性和BERT,HERB,实现了F1得分高达46%。我们展示了两种用例的覆盖预测的效用:KB建设和索赔驳斥。
translated by 谷歌翻译
符号知识图(kgs)是通过昂贵的人众包或特定于域特异性的复杂信息提取管道来构建的。诸如BERT之类的新兴大型语言模型(LMS)已显示出隐式编码的大量知识,可以使用正确设计的提示来查询。但是,与明确的公斤相比,黑盒LMS中的知识通常很难访问或编辑,并且缺乏解释性。在这项工作中,我们旨在从LMS收获符号KG,这是一个由神经LMS的灵活性和可扩展性增强的自动kg构造的新框架。与通常依赖大型人类注释的数据或现有大量KG的先前作品相比,我们的方法仅需要对关系的最小定义作为输入,因此适合于以前无法提取有关丰富新关系的知识。该方法会自动生成多样化的提示,并在给定的LM内执行有效的知识搜索,以进行一致和广泛的输出。与以前的方法相比,使用我们的方法收获的知识要准确得多,如自动和人类评估所示。结果,我们源于多元化的LMS,一个新的KG家族(例如Bertnet和Robertanet),其中包含一套更丰富的常识关系,包括复杂的关系(例如,A对B的能力,但不擅长B”)人类注销的kg(例如概念网)。此外,由此产生的kg也是解释各自的源LMS的工具,从而导致对不同LMS不同知识能力的新见解。
translated by 谷歌翻译
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present COMMONSENSEQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from CON-CEPTNET (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
translated by 谷歌翻译
语言模型(LMS)已被证明在各种下游应用程序中很有用,例如摘要,翻译,问答和文本分类。由于它们可以存储的大量信息,LMS正在成为人工智能中越来越重要的工具。在这项工作中,我们提出了道具(提示为探测),该道具利用GPT-3(最初由OpenAI在2020年提出的大型语言模型)来执行知识基础构建任务(KBC)。 Prop实施了一种多步骤方法,该方法结合了各种提示技术来实现这一目标。我们的结果表明,手动提示策划是必不可少的,必须鼓励LM给出可变长度的答案集,特别是包括空的答案集,True/False问题是提高LM生成的建议精度的有用设备。 LM的大小是至关重要的因素,并且实体字典别名提高了LM评分。我们的评估研究表明,这些提出的技术可以大大提高最终预测的质量:Prop赢得了LM-KBC竞争的轨道2,表现优于基线36.4个百分点。我们的实施可在https://github.com/hemile/iswc-challenge上获得。
translated by 谷歌翻译
如果没有标记的问答对必要的培训对,因此由于知识库(KBS)等勤识来源不可或缺的独特先决条件,这似乎是极具挑战性的,这通常是施工的知识库(KBS)不可或缺的独特先决条件。最近训练的语言模型(PRLMS)表现出效果,作为偶然信念的替代品,当他们发挥知识发生器的作用时。然而,现有的工作简单地产生了数百个伪答案,或者根据所有的模板粗略地执行知识生成,这可能导致很多噪声,从而阻碍了所产生的知识的质量。受人类思维经验的动机,我们提出了一种通过在知识产生的完全关联中通过全面思想家(艺术)的方法。详细地,我们的模型首先侧重于给定的上下文中的关键部件,然后以人类思维等关联方式在这种基础上产生高度相关的知识。此外,为了休闲推理,建议逆向思维机制进行原因和效果之间进行双向推断。艺术是完全无人监督和无kbs的。我们在三个型号QA基准中评估它:COPA,SocialiQA和SCT。在所有PRLM骨架的尺度上,艺术表明其辉煌的性能和优于先前的未经监督模型。
translated by 谷歌翻译
Multiple choice questions (MCQs) are widely used in digital learning systems, as they allow for automating the assessment process. However, due to the increased digital literacy of students and the advent of social media platforms, MCQ tests are widely shared online, and teachers are continuously challenged to create new questions, which is an expensive and time-consuming task. A particularly sensitive aspect of MCQ creation is to devise relevant distractors, i.e., wrong answers that are not easily identifiable as being wrong. This paper studies how a large existing set of manually created answers and distractors for questions over a variety of domains, subjects, and languages can be leveraged to help teachers in creating new MCQs, by the smart reuse of existing distractors. We built several data-driven models based on context-aware question and distractor representations, and compared them with static feature-based models. The proposed models are evaluated with automated metrics and in a realistic user test with teachers. Both automatic and human evaluations indicate that context-aware models consistently outperform a static feature-based approach. For our best-performing context-aware model, on average 3 distractors out of the 10 shown to teachers were rated as high-quality distractors. We create a performance benchmark, and make it public, to enable comparison between different approaches and to introduce a more standardized evaluation of the task. The benchmark contains a test of 298 educational questions covering multiple subjects & languages and a 77k multilingual pool of distractor vocabulary for future research.
translated by 谷歌翻译
随着人工智能系统变得越来越强大和普遍,人们对机器的道德或缺乏道德的关注变得越来越关注。然而,向机器讲授道德是一项艰巨的任务,因为道德仍然是人类中最激烈的争论问题之一,更不用说AI了。但是,部署到数百万用户的现有AI系统已经在做出充满道德影响的决策,这构成了一个看似不可能的挑战:教学机器的道德意义,而人类继续努力努力。为了探索这一挑战,我们介绍了Delphi,这是一个基于深层神经网络的实验框架,直接训练了描述性道德判断,例如,“帮助朋友”通常是不错的,而“帮助朋友传播假新闻”不是。经验结果提供了对机器伦理的承诺和局限性的新见解。面对新的道德情况,德尔菲(Delphi)表现出强大的概括能力,而现成的神经网络模型表现出明显差的判断,包括不公正的偏见,证实了对明确教学机器的道德意义的必要性。然而,德尔菲并不完美,表现出对普遍性偏见和不一致的敏感性。尽管如此,我们还是展示了不完美的Delphi的积极用例,包括在其他不完美的AI系统中将其用作组件模型。重要的是,我们根据著名的道德理论来解释Delphi的运营化,这使我们提出了重要的未来研究问题。
translated by 谷歌翻译
大型基于变压器的预训练的语言模型在各种知识密集的任务上取得了令人印象深刻的表现,并可以在其参数中捕获事实知识。我们认为,考虑到不断增长的知识和资源需求,在模型参数中存储大量知识是亚最佳选择。我们认为,更有效的替代方法是向模型提供对上下文相关的结构化知识的明确访问,并训练它以使用该知识。我们提出了LM核 - 实现这一目标的一般框架 - 允许从外部知识源对语言模型培训的\ textit {解耦},并允许后者更新而不会影响已经训练的模型。实验结果表明,LM核心获得外部知识,在知识探索任务上的最先进的知识增强语言模型中实现了重要而强大的优于性能。可以有效处理知识更新;并在两个下游任务上表现良好。我们还提出了一个彻底的错误分析,突出了LM核的成功和失败。
translated by 谷歌翻译
Wikidata是一个经常更新,社区驱动和多语言知识图形。因此,Wikidata是实体联系的一个有吸引力的基础,这是最近发表论文的增加显而易见的。该调查侧重于四个主题:(1)存在哪些Wikidata实体链接数据集,它们是多么广泛使用,它们是如何构建的? (2)对实体联系数据集的设计进行Wikidata的特点,如果是的话,怎么样? (3)当前实体链接方法如何利用Wikidata的特定特征? (4)现有实体链接方法未开发哪种Wikidata特征?本次调查显示,当前的Wikidata特定实体链接数据集在其他知识图表中的方案中的注释方案中没有不同。因此,没有提升多语言和时间依赖数据集的可能性,是自然适合维基帽的数据集。此外,我们表明大多数实体链接方法使用Wikidata以与任何其他知识图相同的方式,因为任何其他知识图都缺少了利用Wikidata特定特征来提高质量的机会。几乎所有方法都使用标签等特定属性,有时是描述,而是忽略超关系结构等特征。因此,例如,通过包括超关系图嵌入或类型信息,仍有改进的余地。许多方法还包括来自维基百科的信息,这些信息很容易与Wikidata组合并提供有价值的文本信息,Wikidata缺乏。
translated by 谷歌翻译
自动问题应答(QA)系统的目的是以时间有效的方式向用户查询提供答案。通常在数据库(或知识库)或通常被称为语料库的文件集合中找到答案。在过去的几十年里,收购知识的扩散,因此生物医学领域的新科学文章一直是指数增长。因此,即使对于领域专家,也难以跟踪域中的所有信息。随着商业搜索引擎的改进,用户可以在某些情况下键入其查询并获得最相关的一小组文档,以及在某些情况下从文档中的相关片段。但是,手动查找所需信息或答案可能仍然令人疑惑和耗时。这需要开发高效的QA系统,该系统旨在为用户提供精确和精确的答案提供了生物医学领域的自然语言问题。在本文中,我们介绍了用于开发普通域QA系统的基本方法,然后彻底调查生物医学QA系统的不同方面,包括使用结构化数据库和文本集合的基准数据集和几种提出的方​​法。我们还探讨了当前系统的局限性,并探索潜在的途径以获得进一步的进步。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
translated by 谷歌翻译
在维持预审预定序列模型的灵活性的同时,是否有利于常识性推理,这仍然是一个悬而未决的问题。为了调查这个问题,我们开发了生成的知识提示,该提示包括从语言模型中生成知识,然后在回答问题时提供知识作为附加输入。我们的方法不需要特定于任务的监督知识集成或访问结构化的知识库,但它可以提高四个常识性推理任务上的大规模,最先进的模型的性能,从而实现最先进-ART结果取决于数值常识(NumerSense),通用常识性(Commonsenseqa 2.0)和科学常识(QASC)基准。产生的知识促使大型语言模型是灵活的外部知识来源,以改善常识性推理。我们的代码可从https://github.com/liujch1998/gkp获得
translated by 谷歌翻译
Conceptual knowledge is fundamental to human cognition and knowledge bases. However, existing knowledge probing works only focus on evaluating factual knowledge of pre-trained language models (PLMs) and ignore conceptual knowledge. Since conceptual knowledge often appears as implicit commonsense behind texts, designing probes for conceptual knowledge is hard. Inspired by knowledge representation schemata, we comprehensively evaluate conceptual knowledge of PLMs by designing three tasks to probe whether PLMs organize entities by conceptual similarities, learn conceptual properties, and conceptualize entities in contexts, respectively. For the tasks, we collect and annotate 24k data instances covering 393 concepts, which is COPEN, a COnceptual knowledge Probing bENchmark. Extensive experiments on different sizes and types of PLMs show that existing PLMs systematically lack conceptual knowledge and suffer from various spurious correlations. We believe this is a critical bottleneck for realizing human-like cognition in PLMs. COPEN and our codes are publicly released at https://github.com/THU-KEG/COPEN.
translated by 谷歌翻译