未知的非线性动力学通常会限制前馈控制的跟踪性能。本文的目的是开发一个可以使用通用函数近似器来补偿这些未知非线性动力学的前馈控制框架。前馈控制器被参数化为基于物理模型和神经网络的平行组合,在该组合中,两者都共享相同的线性自回旋(AR)动力学。该参数化允许通过Sanathanan-Koerner(SK)迭代进行有效的输出误差优化。在每个Sk-itteration中,神经网络的输出在基于物理模型的子空间中通过基于正交投影的正则化受到惩罚,从而使神经网络仅捕获未建模的动力学,从而产生可解释的模型。
translated by 谷歌翻译
响应于不同规格的产品的不断变化的原料供应和市场需求,需要在时变的操作条件和目标(例如,设定值)的过程中运行,以改善过程经济,与预定的传统过程操作相比均衡。本文开发了一种用于非线性化学过程的基于收缩理论的控制方法,以实现时变参考跟踪。这种方法利用神经网络的通用近似特征,采用离散时间收缩分析和控制。它涉及训练神经网络以学习嵌入基于收缩的控制器中的收缩度量和差分反馈增益。第二个,单独的神经网络也结合到控制循环中,以在线学习不确定系统模型参数。得到的控制方案能够实现有效的偏移跟踪时变的参考,其具有全范围的模型不确定性,而无需控制器结构作为参考变化重新设计。这是一种强大的方法,可以在工艺模型中处理流程模型中的有界参数不确定性,这些方法通常遇到工业(化学)过程中。这种方法还确保在线同时学习和控制期间的过程稳定性。提供模拟实施例以说明上述方法。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
本文介绍了最近在文献中引入的二次神经网络的分析和设计,以及它们在动态系统的回归,分类,系统识别和控制中的应用。这些网络提供了几个优点,其中最重要的是该体系结构是设计的副产品,尚未确定a-priori,可以通过解决凸优化问题来完成他们的培训可以实现权重,并且输入输出映射可以通过二次形式在分析上表示。从几个示例中也可以看出,这些网络仅使用一小部分培训数据就可以很好地工作。纸质铸造回归,分类,系统识别,稳定性和控制设计作为凸优化问题的结果,可以用多项式时间算法有效地求解到全局最佳。几个示例将显示二次神经网络在应用中的有效性。
translated by 谷歌翻译
我们试图将广泛的神经网络的非线性建模功能与模型预测控制(MPC)的安全保证相结合,并在严格的在线计算框架中。可以使用Koopman运算符捕获所考虑的网络类,并将其集成到基于Koopman的跟踪MPC(KTMPC)中,以用于非线性系统以跟踪分段常数引用。原始非线性动力学与其训练有素的Koopman线性模型之间模型不匹配的影响是通过在建议的跟踪MPC策略中使用约束拧紧方法来处理的。通过选择两个Lyapunov候选功能,我们证明解决方案是可行的,并且在存在有限的建模错误的情况下,在线和离线最佳可触发稳定输出均具有稳定的输入到状态。最后,我们展示了一个数值示例的结果以及自动地面车辆在跟踪给定参考文献中的应用。
translated by 谷歌翻译
这项工作为鉴定非线性自回归外源性(NARX)模型提供了一种新颖的正则化方法。正则化方法促进了过去输入样品对当前模型输出的影响的指数衰减。这是通过惩罚NARX模型模拟输出相对于过去输入的灵敏度来完成的。这促进了估计模型的稳定性,并提高了获得的模型质量。通过模拟示例证明了该方法的有效性,其中使用这种新方法识别神经网络NARX模型。此外,与其他正则化方法和模型类相比,提出的正则化方法在模拟误差性能方面提高了模型精度。
translated by 谷歌翻译
We consider the nonlinear inverse problem of learning a transition operator $\mathbf{A}$ from partial observations at different times, in particular from sparse observations of entries of its powers $\mathbf{A},\mathbf{A}^2,\cdots,\mathbf{A}^{T}$. This Spatio-Temporal Transition Operator Recovery problem is motivated by the recent interest in learning time-varying graph signals that are driven by graph operators depending on the underlying graph topology. We address the nonlinearity of the problem by embedding it into a higher-dimensional space of suitable block-Hankel matrices, where it becomes a low-rank matrix completion problem, even if $\mathbf{A}$ is of full rank. For both a uniform and an adaptive random space-time sampling model, we quantify the recoverability of the transition operator via suitable measures of incoherence of these block-Hankel embedding matrices. For graph transition operators these measures of incoherence depend on the interplay between the dynamics and the graph topology. We develop a suitable non-convex iterative reweighted least squares (IRLS) algorithm, establish its quadratic local convergence, and show that, in optimal scenarios, no more than $\mathcal{O}(rn \log(nT))$ space-time samples are sufficient to ensure accurate recovery of a rank-$r$ operator $\mathbf{A}$ of size $n \times n$. This establishes that spatial samples can be substituted by a comparable number of space-time samples. We provide an efficient implementation of the proposed IRLS algorithm with space complexity of order $O(r n T)$ and per-iteration time complexity linear in $n$. Numerical experiments for transition operators based on several graph models confirm that the theoretical findings accurately track empirical phase transitions, and illustrate the applicability and scalability of the proposed algorithm.
translated by 谷歌翻译
用于未知非线性系统的学习和合成稳定控制器是现实世界和工业应用的具有挑战性问题。 Koopman操作员理论允许通过直线系统和非线性控制系统的镜头通过线性系统和非线性控制系统的镜头来分析非线性系统。这些方法的关键思想,在于将非线性系统的坐标转换为Koopman可观察,这是允许原始系统(控制系统)作为更高尺寸线性(双线性控制)系统的坐标。然而,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是稳定的,因此,不保证稳定反馈控制的存在,这对于许多真实世界的应用来说是至关重要的。同时识别基于这些可稳定的Koopman的双线性控制系统以及相关的Koopman可观察到仍然是一个开放的问题。在本文中,我们提出了一个框架,以通过同时学习为基于Koopman的底层未知的非线性控制系统以及基于Koopman的控制Lyapunov函数(CLF)来识别和构造这些可稳定的双线性模型及其相关的可观察能力。双线性模型使用学习者和伪空。我们提出的方法从而为非线性控制系统具有未知动态的非线性控制系统提供了可证明的全球渐近稳定性的保证。提供了数值模拟,以验证我们提出的稳定反馈控制器为未知的非线性系统的效力。
translated by 谷歌翻译
我们介绍了一种闭合方法,用于识别来自数据的离散时间线性时变量,将学习问题作为正规化的最小二乘问题,符号器在轨迹内有利于平滑的解决方案。我们开发了一种封闭式算法,保证了最优性,并且复杂性随着每个轨迹所考虑的即时线性而增加。即使在存在大量数据的情况下,宇宙算法也可以实现所需的结果。我们的方法使用比通用凸起求解器的两个数量级较少的计算能力解决了这个问题,并且比随机块坐标血压尤其是设计的方法快3倍。即使对于10K和100K时间瞬间,我们的方法的计算时间仍然是第二个,即通用求解器崩溃的时间。为了证明其对现实世界系统的适用性,我们使用春季大众阻尼系统测试并使用估计的模型来找到最佳控制路径。我们的算法应用于彗星拦截器任务的低保真度和功能工程模拟器,需要精确指向车载摄像机在快速动态环境中。因此,本文提供了一种快速替代于用于线性时变系统的经典系统识别技术,同时证明是空间行业中的应用的实心基础,以及向该算法结合杠杆化数据的算法的步骤关键环境。
translated by 谷歌翻译
在本文中,我们提供了有关Hankel低级近似和完成工作的综述和书目,特别强调了如何将这种方法用于时间序列分析和预测。我们首先描述问题的可能表述,并就获得全球最佳解决方案的相关主题和挑战提供评论。提供了关键定理,并且纸张以一些说明性示例关闭。
translated by 谷歌翻译
当考虑了许多提升功能时,从数据近似数据在数值上具有挑战性。即使是低维系统也可以在高维升空的空间中产生不稳定或不良条件的结果。在本文中,具有控制的扩展动态模式分解(DMD)和DMD,两种用于近似Koopman运算符的方法,被重新列为线性矩阵不等式约束的凸优化问题。然后将渐近稳定性约束和系统规范正规化器作为改善Koopman操作员的数值条件的方法合并。具体而言,H-Infinity Narm用于惩罚Koopman系统的投入输出增益。然后将加权功能应用于特定频率下的系统增益。这些约束和正规化器将双线性矩阵不等式的约束引入回归问题,这些问题是通过求解凸优化问题的序列来处理的。实验结果使用来自飞机疲劳结构测试钻机和软机器人臂的数据突出了所提出的回归方法的优势。
translated by 谷歌翻译
由于其固有的非线性和高度的自由度,对连续体软机器人的建模和控制仍然是一项艰巨的任务。这些复杂性阻碍了适合实时控制的高保真模型的构建。尽管已经提出了各种模型和基于学习的方法来应对这些挑战,但它们缺乏普遍性,很少保留动态的结构。在这项工作中,我们提出了一种新的,数据驱动的方法,用于从数据中提取面向控制的模型。我们克服了上面概述的问题,并证明了我们对光谱次级减少(SSMR)的卓越性能 - \'a-vis the Art的状态。
translated by 谷歌翻译
平衡系统是表达神经计算的有力方法。作为特殊情况,它们包括对神经科学和机器学习的最新兴趣模型,例如平衡复发性神经网络,深度平衡模型或元学习。在这里,我们提出了一个新的原则,用于学习具有时间和空间本地规则的此类系统。我们的原理将学习作为一个最不控制的问题,我们首先引入一个最佳控制器,以将系统带入解决方案状态,然后将学习定义为减少达到这种状态所需的控制量。我们表明,将学习信号纳入动力学作为最佳控制可以以先前未知的方式传输信用分配信息,避免将中间状态存储在内存中,并且不依赖无穷小的学习信号。在实践中,我们的原理可以使基于梯度的学习方法的强大绩效匹配,该方法应用于涉及复发性神经网络和元学习的一系列问题。我们的结果阐明了大脑如何学习并提供解决广泛的机器学习问题的新方法。
translated by 谷歌翻译
收缩理论是一种分析工具,用于研究以均匀的正面矩阵定义的收缩度量下的非自主(即,时变)非线性系统的差动动力学,其存在导致增量指数的必要和充分表征多种溶液轨迹彼此相互稳定性的稳定性。通过使用平方差分长度作为Lyapunov样功能,其非线性稳定性分析向下沸腾以找到满足以表达为线性矩阵不等式的稳定条件的合适的收缩度量,表明可以在众所周知的线性系统之间绘制许多平行线非线性系统理论与收缩理论。此外,收缩理论利用了与比较引理结合使用的指数稳定性的优越稳健性。这产生了基于神经网络的控制和估计方案的急需安全性和稳定性保证,而不借助使用均匀渐近稳定性的更涉及的输入到状态稳定性方法。这种独特的特征允许通过凸优化来系统构造收缩度量,从而获得了由于扰动和学习误差而在外部扰动的时变的目标轨迹和解决方案轨迹之间的距离上的明确指数界限。因此,本文的目的是介绍了收缩理论的课程概述及其在确定性和随机系统的非线性稳定性分析中的优点,重点导出了各种基于学习和数据驱动的自动控制方法的正式鲁棒性和稳定性保证。特别是,我们提供了使用深神经网络寻找收缩指标和相关控制和估计法的技术的详细审查。
translated by 谷歌翻译
We investigate the problem of recovering a partially observed high-rank matrix whose columns obey a nonlinear structure such as a union of subspaces, an algebraic variety or grouped in clusters. The recovery problem is formulated as the rank minimization of a nonlinear feature map applied to the original matrix, which is then further approximated by a constrained non-convex optimization problem involving the Grassmann manifold. We propose two sets of algorithms, one arising from Riemannian optimization and the other as an alternating minimization scheme, both of which include first- and second-order variants. Both sets of algorithms have theoretical guarantees. In particular, for the alternating minimization, we establish global convergence and worst-case complexity bounds. Additionally, using the Kurdyka-Lojasiewicz property, we show that the alternating minimization converges to a unique limit point. We provide extensive numerical results for the recovery of union of subspaces and clustering under entry sampling and dense Gaussian sampling. Our methods are competitive with existing approaches and, in particular, high accuracy is achieved in the recovery using Riemannian second-order methods.
translated by 谷歌翻译
随着机器人在现实世界中冒险,他们受到无意义的动态和干扰。在相对静态和已知的操作环境中已成功地证明了基于传统的基于模型的控制方法。但是,当机器人的准确模型不可用时,基于模型的设计可能导致次优甚至不安全的行为。在这项工作中,我们提出了一种桥接模型 - 现实差距的方法,并且即使存在动态不确定性,也能够应用基于模型的方法。特别地,我们介绍基于学习的模型参考适应方法,其使机器人系统具有可能不确定的动态,表现为预定义的参考模型。反过来,参考模型可用于基于模型的控制器设计。与典型的模型参考调整控制方法相比,我们利用神经网络的代表性力量来捕获高度非线性动力学的不确定性,并通过在称为Lipschitz网络的特殊类型神经网络的建筑设计中编码认证嘴唇条件来捕获高度非线性动力学的不确定性和保证稳定性。即使我们的关于真正的机器人系统的先验知识有限,我们的方法也适用于一般的非线性控制仿射系统。我们展示了我们在飞行倒置摆的方法中的方法,其中一个搁板的四轮电机被挑战,以平衡倒挂摆在悬停或跟踪圆形轨迹时。
translated by 谷歌翻译
稳定性认证并确定安全稳定的初始集是确保动态系统的操作安全性,稳定性和鲁棒性的两个重要问题。随着机器学习工具的出现,需要针对反馈循环中具有机器学习组件的系统来解决这些问题。为了开发一种关于神经网络(NN)控制的非线性系统的稳定性和稳定性的一般理论,提出了基于Lyapunov的稳定性证书,并进一步用于设计用于NN Controller和NN控制器和最大LIPSCHITZ绑定的。也是给定的安全操作域内内部相应的最大诱因(ROA)。为了计算这种强大的稳定NN控制器,它也最大化了系统的长期实用程序,提出了稳定性保证训练(SGT)算法。提出的框架的有效性通过说明性示例得到了验证。
translated by 谷歌翻译
我们提出了一种基于物理知识的随机投影神经网络的数值方法,用于解决常微分方程(ODES)的初始值问题(IVPS)的解决方案,重点是僵硬的问题。我们使用具有径向基函数的单个隐藏层来解决一个极端学习机,其具有宽度均匀分布的随机变量,而输入和隐藏层之间的权重的值设置为等于1。通过构造非线性代数方程的系统来获得IVPS的数值解决方案,该系统由高斯-Nythto方法通过Gauss-Newton方法解决了输出权重,以调整集成时间间隔的简单自适应方案。为了评估其性能,我们应用了四个基准僵硬IVPS解决方案的提议方法,即预热罗宾逊,梵德,罗伯和雇用问题。我们的方法与基于Dormand-Prince对的自适应跳动-Kutta方法进行比较,以及基于数值差分公式的可变步骤可变序列多步解算器,如\ texttt {ode45}和\ texttt {ode15s}所实现的MATLAB功能分别。我们表明所提出的方案产生良好的近似精度,从而优于\ texttt {ode45}和\ texttt {ode15s},尤其是在出现陡峭梯度的情况下。此外,我们的方法的计算时间与两种Matlab溶剂的计算时间用于实际目的。
translated by 谷歌翻译
与古典浅表示学习技术相比,深神经网络在几乎每个应用基准中都实现了卓越的性能。但尽管他们明确的经验优势,但它仍然没有很好地理解,是什么让他们如此有效。为了解决这个问题,我们引入了深度框架近似:用结构化超常帧的受限表示学习的统一框架。虽然精确推断需要迭代优化,但是可以通过前馈深神经网络的操作来近似。我们间接分析模型容量如何涉及由架构超参数,如深度,宽度和跳过连接引起的帧结构。我们通过深度框架电位量化这些结构差异,与表示唯一性和稳定性相关的数据无关的相干措施。作为模型选择的标准,我们将与各种常见的深网络架构和数据集的泛化误差显示相关性。我们还证明了实现迭代优化算法的复发网络如何实现与其前馈近似的性能相当,同时提高对抗鲁棒性。这种与既定的过度符合表达理论的联系表明,具有较少对临时工程依赖的原则深网络架构设计的新方向。
translated by 谷歌翻译
近年来,深度学习在图像重建方面取得了显着的经验成功。这已经促进了对关键用例中数据驱动方法的正确性和可靠性的精确表征的持续追求,例如在医学成像中。尽管基于深度学习的方法具有出色的性能和功效,但对其稳定性或缺乏稳定性的关注以及严重的实际含义。近年来,已经取得了重大进展,以揭示数据驱动的图像恢复方法的内部运作,从而挑战了其广泛认为的黑盒本质。在本文中,我们将为数据驱动的图像重建指定相关的融合概念,该概念将构成具有数学上严格重建保证的学习方法调查的基础。强调的一个例子是ICNN的作用,提供了将深度学习的力量与经典凸正则化理论相结合的可能性,用于设计被证明是融合的方法。这篇调查文章旨在通过提供对数据驱动的图像重建方法以及从业人员的理解,旨在通过提供可访问的融合概念的描述,并通过将一些现有的经验实践放在可靠的数学上,来推进我们对数据驱动图像重建方法的理解以及从业人员的了解。基础。
translated by 谷歌翻译