现有的自动数据增强(DA)方法要么忽略根据培训期间目标模型的状态根据目标模型的状态忽略更新DA的参数,要么采用不够有效的更新策略。在这项工作中,我们设计了一种新型的数据增强策略,称为“通用自适应数据增强”(UADA)。与现有方法不同,UADA会根据目标模型在训练过程中根据目标模型的梯度信息自适应地更新DA的参数:给定预定义的DA操作集,我们随机确定培训期间每个数据批次的DA操作的类型和大小,并自适应地更新DA的参数沿损失的梯度方向与DA参数有关。这样,UADA可以增加目标网络的训练损失,而目标网络将从更艰难的样本中学习以改善概括的功能。此外,UADA非常通用,可以在许多任务中使用,例如图像分类,语义分割和对象检测。在CIFAR-10,CIFAR-100,ImageNet,Tiny-Imagenet,CityScapes和VOC07+12上进行了各种模型的广泛实验,以证明我们提出的适应性增强带来了重大的性能改善。
translated by 谷歌翻译
Deep Neural Networks (DNNs) are vulnerable to the black-box adversarial attack that is highly transferable. This threat comes from the distribution gap between adversarial and clean samples in feature space of the target DNNs. In this paper, we use Deep Generative Networks (DGNs) with a novel training mechanism to eliminate the distribution gap. The trained DGNs align the distribution of adversarial samples with clean ones for the target DNNs by translating pixel values. Different from previous work, we propose a more effective pixel level training constraint to make this achievable, thus enhancing robustness on adversarial samples. Further, a class-aware feature-level constraint is formulated for integrated distribution alignment. Our approach is general and applicable to multiple tasks, including image classification, semantic segmentation, and object detection. We conduct extensive experiments on different datasets. Our strategy demonstrates its unique effectiveness and generality against black-box attacks.
translated by 谷歌翻译
数据增强(DA)已被广泛调查,以便于多项任务中的模型优化。然而,在大多数情况下,对于具有某种概率的每个训练样本随机地对数据增强进行数据增强,这可能会产生内容破坏和视觉模糊。为了消除这一点,在本文中,我们提出了一种有效的方法,将选择,以基于样本内容和网络培训状态选择要以确定性和在线方式增强的样本。具体而言,在每批中,我们首先确定增强比,然后决定是否以这种比率增强每个训练样本。我们将此过程塑造为两步马尔可夫决策过程,并采用分层强化学习(HRL)来学习增强策略。以这种方式,可以有效地缓解选择用于增强的样品在选择样品时的负面影响,并且改善了DA的有效性。广泛的实验表明,我们所提出的选择可以适应许多常用的DA方法,例如混合,切割,自动化等,以及改善图像分类和细粒度图像识别的多个基准数据集中的性能。
translated by 谷歌翻译
近年来,计算机视觉社区中最受欢迎的技术之一就是深度学习技术。作为一种数据驱动的技术,深层模型需要大量准确标记的培训数据,这在许多现实世界中通常是无法访问的。数据空间解决方案是数据增强(DA),可以人为地从原始样本中生成新图像。图像增强策略可能因数据集而有所不同,因为不同的数据类型可能需要不同的增强以促进模型培训。但是,DA策略的设计主要由具有领域知识的人类专家决定,这被认为是高度主观和错误的。为了减轻此类问题,一个新颖的方向是使用自动数据增强(AUTODA)技术自动从给定数据集中学习图像增强策略。 Autoda模型的目的是找到可以最大化模型性能提高的最佳DA策略。这项调查从图像分类的角度讨论了Autoda技术出现的根本原因。我们确定标准自动赛车模型的三个关键组件:搜索空间,搜索算法和评估功能。根据他们的架构,我们提供了现有图像AUTODA方法的系统分类法。本文介绍了Autoda领域的主要作品,讨论了他们的利弊,并提出了一些潜在的方向以进行未来的改进。
translated by 谷歌翻译
在许多分类问题中,我们希望一个对一系列非语义转换具有强大的分类器。例如,无论其出现的方向和姿势如何,人都可以识别图片中的狗。存在实质性证据表明这种不变性可以显着提高机器学习模型的准确性和泛化。教导模型几何修正型的常用技术是通过变换输入来增加训练数据。但是,对于给定的分类任务期望需要哪种修正,并不总是已知的。确定有效的数据增强策略可以要求域专业知识或广泛的数据预处理。最近的努力,如自动化优化数据增强策略的参数化搜索空间,以自动化增强过程。虽然自动化和类似方法在几个常见的数据集上实现最先进的分类准确性,但它们仅限于学习一个数据增强策略。通常不同的类别或功能呼叫不同的几何修正。我们介绍了动态网络增强(DNA),从而了解输入条件增强策略。我们模型中的增强参数是神经网络的输出,并且随着网络权重被更新时被隐式学习。我们的模型允许动态增强策略,并在输入功能上具有几何变换的数据良好。
translated by 谷歌翻译
我们向您展示一次(YOCO)进行数据增强。 Yoco将一张图像切成两片,并在每件零件中单独执行数据增强。应用YOCO改善了每个样品的增强的多样性,并鼓励神经网络从部分信息中识别对象。 Yoco享受无参数,轻松使用的属性,并免费提供几乎所有的增强功能。进行了彻底的实验以评估其有效性。我们首先证明Yoco可以无缝地应用于不同的数据增强,神经网络体系结构,并在CIFAR和Imagenet分类任务上带来性能提高,有时会超过传统的图像级增强。此外,我们显示了Yoco益处对比的预培训,以更强大的表示,可以更好地转移到多个下游任务。最后,我们研究了Yoco的许多变体,并经验分析了各个设置的性能。代码可在GitHub上找到。
translated by 谷歌翻译
神经网络在医疗图像分割任务上的成功通常依赖于大型标记的数据集用于模型培训。但是,由于数据共享和隐私问题,获取和手动标记大型医疗图像集是资源密集的,昂贵的,有时是不切实际的。为了应对这一挑战,我们提出了一个通用的对抗数据增强框架Advchain,旨在提高培训数据对医疗图像分割任务的多样性和有效性。 AdvChain通过动态数据增强来增强数据,从而产生随机链接的光线像和几何转换,以类似于现实而又具有挑战性的成像变化以扩展训练数据。通过在培训期间共同优化数据增强模型和分割网络,可以生成具有挑战性的示例,以增强下游任务的网络可推广性。所提出的对抗数据增强不依赖生成网络,可以用作通用分割网络中的插件模块。它在计算上是有效的,适用于低声监督和半监督学习。我们在两个MR图像分割任务上分析和评估该方法:心脏分割和前列腺分割具有有限的标记数据。结果表明,所提出的方法可以减轻对标记数据的需求,同时提高模型泛化能力,表明其在医学成像应用中的实际价值。
translated by 谷歌翻译
Data augmentation (DA) is a widely used technique for enhancing the training of deep neural networks. Recent DA techniques which achieve state-of-the-art performance always meet the need for diversity in augmented training samples. However, an augmentation strategy that has a high diversity usually introduces out-of-distribution (OOD) augmented samples and these samples consequently impair the performance. To alleviate this issue, we propose ReSmooth, a framework that firstly detects OOD samples in augmented samples and then leverages them. To be specific, we first use a Gaussian mixture model to fit the loss distribution of both the original and augmented samples and accordingly split these samples into in-distribution (ID) samples and OOD samples. Then we start a new training where ID and OOD samples are incorporated with different smooth labels. By treating ID samples and OOD samples unequally, we can make better use of the diverse augmented data. Further, we incorporate our ReSmooth framework with negative data augmentation strategies. By properly handling their intentionally created OOD samples, the classification performance of negative data augmentations is largely ameliorated. Experiments on several classification benchmarks show that ReSmooth can be easily extended to existing augmentation strategies (such as RandAugment, rotate, and jigsaw) and improve on them. Our code is available at https://github.com/Chenyang4/ReSmooth.
translated by 谷歌翻译
对抗性攻击提供了研究深层学习模式的稳健性的好方法。基于转移的黑盒攻击中的一种方法利用了几种图像变换操作来提高对逆势示例的可转换性,这是有效的,但不能考虑输入图像的特定特征。在这项工作中,我们提出了一种新颖的架构,称为自适应图像转换学习者(AIT1),其将不同的图像变换操作结合到统一的框架中,以进一步提高对抗性示例的可转移性。与现有工作中使用的固定组合变换不同,我们精心设计的转换学习者自适应地选择特定于输入图像的图像变换最有效的组合。关于Imagenet的广泛实验表明,我们的方法在各种设置下显着提高了正常培训的模型和防御模型的攻击成功率。
translated by 谷歌翻译
Data augmentation is a widely used technique for enhancing the generalization ability of convolutional neural networks (CNNs) in image classification tasks. Occlusion is a critical factor that affects on the generalization ability of image classification models. In order to generate new samples, existing data augmentation methods based on information deletion simulate occluded samples by randomly removing some areas in the images. However, those methods cannot delete areas of the images according to their structural features of the images. To solve those problems, we propose a novel data augmentation method, AdvMask, for image classification tasks. Instead of randomly removing areas in the images, AdvMask obtains the key points that have the greatest influence on the classification results via an end-to-end sparse adversarial attack module. Therefore, we can find the most sensitive points of the classification results without considering the diversity of various image appearance and shapes of the object of interest. In addition, a data augmentation module is employed to generate structured masks based on the key points, thus forcing the CNN classification models to seek other relevant content when the most discriminative content is hidden. AdvMask can effectively improve the performance of classification models in the testing process. The experimental results on various datasets and CNN models verify that the proposed method outperforms other previous data augmentation methods in image classification tasks.
translated by 谷歌翻译
在本文中,我们考虑了语义分割中域概括的问题,该问题旨在仅使用标记的合成(源)数据来学习强大的模型。该模型有望在看不见的真实(目标)域上表现良好。我们的研究发现,图像样式的变化在很大程度上可以影响模型的性能,并且样式特征可以通过图像的频率平均值和标准偏差来很好地表示。受此启发,我们提出了一种新颖的对抗性增强(Advstyle)方法,该方法可以在训练过程中动态生成硬性化的图像,因此可以有效防止该模型过度适应源域。具体而言,AdvStyle将样式功能视为可学习的参数,并通过对抗培训对其进行更新。学习的对抗性风格功能用于构建用于健壮模型训练的对抗图像。 AdvStyle易于实现,并且可以轻松地应用于不同的模型。对两个合成到现实的语义分割基准的实验表明,Advstyle可以显着改善看不见的真实域的模型性能,并表明我们可以实现最新技术的状态。此外,可以将AdvStyle用于域通用图像分类,并在考虑的数据集上产生明显的改进。
translated by 谷歌翻译
标签噪声在大型现实世界数据集中很常见,其存在会损害深神网络的训练过程。尽管几项工作集中在解决此问题的培训策略上,但很少有研究评估数据增强作为培训深神经网络的设计选择。在这项工作中,我们分析了使用不同数据增强的模型鲁棒性及其在嘈杂标签的存在下对培训的改进。我们评估了数据集MNIST,CIFAR-10,CIFAR-100和现实世界数据集Clothing1M的最新和经典数据增强策略,具有不同级别的合成噪声。我们使用精度度量评估方法。结果表明,与基线相比,适当的数据增强可以大大提高模型的稳健性,可将相对最佳测试准确性的177.84%提高到177.84%的相对最佳测试准确性,而无需增强,并且随着绝对值增加了6%,而该基线的绝对值增加了6%最先进的Dividemix培训策略。
translated by 谷歌翻译
由于存储器和计算资源有限,部署在移动设备上的卷积神经网络(CNNS)是困难的。我们的目标是通过利用特征图中的冗余来设计包括CPU和GPU的异构设备的高效神经网络,这很少在神经结构设计中进行了研究。对于类似CPU的设备,我们提出了一种新颖的CPU高效的Ghost(C-Ghost)模块,以生成从廉价操作的更多特征映射。基于一组内在的特征映射,我们使用廉价的成本应用一系列线性变换,以生成许多幽灵特征图,可以完全揭示内在特征的信息。所提出的C-Ghost模块可以作为即插即用组件,以升级现有的卷积神经网络。 C-Ghost瓶颈旨在堆叠C-Ghost模块,然后可以轻松建立轻量级的C-Ghostnet。我们进一步考虑GPU设备的有效网络。在建筑阶段的情况下,不涉及太多的GPU效率(例如,深度明智的卷积),我们建议利用阶段明智的特征冗余来制定GPU高效的幽灵(G-GHOST)阶段结构。舞台中的特征被分成两个部分,其中使用具有较少输出通道的原始块处理第一部分,用于生成内在特征,另一个通过利用阶段明智的冗余来生成廉价的操作。在基准测试上进行的实验证明了所提出的C-Ghost模块和G-Ghost阶段的有效性。 C-Ghostnet和G-Ghostnet分别可以分别实现CPU和GPU的准确性和延迟的最佳权衡。代码可在https://github.com/huawei-noah/cv-backbones获得。
translated by 谷歌翻译
尽管对视觉识别任务进行了显着进展,但是当培训数据稀缺或高度不平衡时,深神经网络仍然易于普遍,使他们非常容易受到现实世界的例子。在本文中,我们提出了一种令人惊讶的简单且高效的方法来缓解此限制:使用纯噪声图像作为额外的训练数据。与常见使用添加剂噪声或对抗数据的噪声不同,我们通过直接训练纯无随机噪声图像提出了完全不同的视角。我们提出了一种新的分发感知路由批量归一化层(DAR-BN),除了同一网络内的自然图像之外,还可以在纯噪声图像上训练。这鼓励泛化和抑制过度装备。我们所提出的方法显着提高了不平衡的分类性能,从而获得了最先进的导致大量的长尾图像分类数据集(Cifar-10-LT,CiFar-100-LT,想象齿 - LT,和celeba-5)。此外,我们的方法非常简单且易于使用作为一般的新增强工具(在现有增强的顶部),并且可以在任何训练方案中结合。它不需要任何专门的数据生成或培训程序,从而保持培训快速高效
translated by 谷歌翻译
现有的转移攻击方法通常假定攻击者知道黑盒受害者模型的训练集(例如标签集,输入大小),这通常是不现实的,因为在某些情况下,攻击者不知道此信息。在本文中,我们定义了一个通用的可转移攻击(GTA)问题,在该问题中,攻击者不知道此信息,并获得攻击可能来自未知数据集的任何随机遇到的图像。为了解决GTA问题,我们提出了一种新颖的图像分类橡皮擦(ICE),该图像分类(ICE)训练特定的攻击者从任意数据集中擦除任何图像的分类信息。几个数据集的实验表明,ICE在GTA上的现有转移攻击极大地胜过了转移攻击,并表明ICE使用类似纹理的噪声来扰动不同数据集的不同图像。此外,快速傅立叶变换分析表明,每个冰噪声中的主要成分是R,G和B图像通道的三个正弦波。受这个有趣的发现的启发,我们设计了一种新颖的正弦攻击方法(SA),以优化三个正弦波。实验表明,SA的性能与冰相当,表明这三个正弦波是有效的,足以打破GTA设置下的DNN。
translated by 谷歌翻译
已证明深度神经网络容易受到对抗噪声的影响,从而促进了针对对抗攻击的防御。受到对抗噪声包含良好的特征的动机,并且对抗数据和自然数据之间的关系可以帮助推断自然数据并做出可靠的预测,在本文中,我们研究通过学习对抗性标签之间的过渡关系来建模对抗性噪声(即用于生成对抗数据的翻转标签)和天然标签(即自然数据的地面真实标签)。具体而言,我们引入了一个依赖实例的过渡矩阵来关联对抗标签和天然标签,可以将其无缝嵌入目标模型(使我们能够建模更强的自适应对手噪声)。经验评估表明,我们的方法可以有效提高对抗性的准确性。
translated by 谷歌翻译
Synthetic data offers the promise of cheap and bountiful training data for settings where lots of labeled real-world data for tasks is unavailable. However, models trained on synthetic data significantly underperform on real-world data. In this paper, we propose Proportional Amplitude Spectrum Training Augmentation (PASTA), a simple and effective augmentation strategy to improve out-of-the-box synthetic-to-real (syn-to-real) generalization performance. PASTA involves perturbing the amplitude spectrums of the synthetic images in the Fourier domain to generate augmented views. We design PASTA to perturb the amplitude spectrums in a structured manner such that high-frequency components are perturbed relatively more than the low-frequency ones. For the tasks of semantic segmentation (GTAV to Real), object detection (Sim10K to Real), and object recognition (VisDA-C Syn to Real), across a total of 5 syn-to-real shifts, we find that PASTA outperforms more complex state-of-the-art generalization methods while being complementary to the same.
translated by 谷歌翻译
State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal policies. To answer the open question on the importance of magnitude ranges for each augmentation operation, we introduce RangeAugment that allows us to efficiently learn the range of magnitudes for individual as well as composite augmentation operations. RangeAugment uses an auxiliary loss based on image similarity as a measure to control the range of magnitudes of augmentation operations. As a result, RangeAugment has a single scalar parameter for search, image similarity, which we simply optimize via linear search. RangeAugment integrates seamlessly with any model and learns model- and task-specific augmentation policies. With extensive experiments on the ImageNet dataset across different networks, we show that RangeAugment achieves competitive performance to state-of-the-art automatic augmentation methods with 4-5 times fewer augmentation operations. Experimental results on semantic segmentation, object detection, foundation models, and knowledge distillation further shows RangeAugment's effectiveness.
translated by 谷歌翻译
为了应对对抗性实例的威胁,对抗性培训提供了一种有吸引力的选择,可以通过在线增强的对抗示例中的培训模型提高模型稳健性。然而,大多数现有的对抗训练方法通过强化对抗性示例来侧重于提高鲁棒的准确性,但忽略了天然数据和对抗性实施例之间的增加,导致自然精度急剧下降。为了维持自然和强大的准确性之间的权衡,我们从特征适应的角度缓解了转变,并提出了一种特征自适应对抗训练(FAAT),这些培训(FAAT)跨越自然数据和对抗示例优化类条件特征适应。具体而言,我们建议纳入一类条件鉴别者,以鼓励特征成为(1)类鉴别的和(2)不变导致对抗性攻击的变化。新型的FAAT框架通过在天然和对抗数据中产生具有类似分布的特征来实现自然和强大的准确性之间的权衡,并实现从类鉴别特征特征中受益的更高的整体鲁棒性。在各种数据集上的实验表明,FAAT产生更多辨别特征,并对最先进的方法表现有利。代码在https://github.com/visionflow/faat中获得。
translated by 谷歌翻译
转移对抗性攻击是一种非普通的黑匣子逆势攻击,旨在对替代模型进行对抗的对抗扰动,然后对受害者模型应用这种扰动。然而,来自现有方法的扰动的可转移性仍然有限,因为对逆势扰动易于用单个替代模型和特定数据模式容易接收。在本文中,我们建议学习学习可转让的攻击(LLTA)方法,这使得对逆势扰动更广泛地通过学习数据和模型增强。对于数据增强,我们采用简单的随机调整大小和填充。对于模型增强,我们随机更改后部传播而不是前向传播,以消除对模型预测的影响。通过将特定数据和修改模型作为任务的攻击处理,我们预计对抗扰动采用足够的任务来普遍。为此,在扰动生成的迭代期间进一步引入了元学习算法。基础使用的数据集上的经验结果证明了我们的攻击方法的有效性,与最先进的方法相比,转移攻击的成功率较高的12.85%。我们还评估我们在真实世界在线系统上的方法,即Google Cloud Vision API,进一步展示了我们方法的实际潜力。
translated by 谷歌翻译