Obtaining models that capture imaging markers relevant for disease progression and treatment monitoring is challenging. Models are typically based on large amounts of data with annotated examples of known markers aiming at automating detection. High annotation effort and the limitation to a vocabulary of known markers limit the power of such approaches. Here, we perform unsupervised learning to identify anomalies in imaging data as candidates for markers. We propose AnoGAN, a deep convolutional generative adversarial network to learn a manifold of normal anatomical variability, accompanying a novel anomaly scoring scheme based on the mapping from image space to a latent space. Applied to new data, the model labels anomalies, and scores image patches indicating their fit into the learned distribution. Results on optical coherence tomography images of the retina demonstrate that the approach correctly identifies anomalous images, such as images containing retinal fluid or hyperreflective foci.
translated by 谷歌翻译
Anomaly detection is a classical problem in computer vision, namely the determination of the normal from the abnormal when datasets are highly biased towards one class (normal) due to the insufficient sample size of the other class (abnormal). While this can be addressed as a supervised learning problem, a significantly more challenging problem is that of detecting the unknown/unseen anomaly case that takes us instead into the space of a one-class, semi-supervised learning paradigm. We introduce such a novel anomaly detection model, by using a conditional generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space. Employing encoder-decoder-encoder sub-networks in the generator network enables the model to map the input image to a lower dimension vector, which is then used to reconstruct the generated output image. The use of the additional encoder network maps this generated image to its latent representation. Minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution -an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches.
translated by 谷歌翻译
识别异常是指检测不像训练数据分布的样本。许多生成模型已被用于寻找异常,以及其中,基于生成的对抗网络(GaN)的方法目前非常受欢迎。 GANS主要依靠这些模型的丰富上下文信息来识别实际培训分布。在这一类比之后,我们建议了基于GANS -A组合的新型无人监督模型和甘甘。此外,引入了一种新的评分功能,以靶向异常,其中鉴别器的内部表示和发电机的视觉表示的线性组合加上自动化器的编码表示,共同定义所提出的异常得分。该模型进一步评估了诸如SVHN,CIFAR10和MNIST之类的基准数据集以及白血病图像的公共医疗数据集。在所有实验中,我们的模型表现出现有的对应物,同时略微改善推理时间。
translated by 谷歌翻译
在医学成像中,获得大量标记数据通常是一个障碍,因为注释和病理很少。异常检测是一种能够检测到看不见的异常数据的方法,而仅对正常(未经注释)数据进行培训。存在基于生成对抗网络(GAN)的几种算法来执行此任务,但是由于gan的不稳定,存在某些局限性。本文提出了一种新方法,通过将现有方法Ganomaly与逐渐增长的甘纳斯相结合。考虑到其产生高分辨率图像的能力,后者更稳定。该方法是使用时尚MNIST,医学分布分析挑战(情绪)和内部脑部MRI测试的;使用尺寸16x16和32x32的斑块。渐进式甘诺利(Ganomaly)的表现优于一级SVM或时尚MNIST的常规甘诺利。人工异常是在具有不同强度和直径的情绪图像中创建的。渐进式甘加诺利检测到强度和大小不同的最大异常。此外,从渐进的甘诺利中证明,间歇性重建也更好。在内部脑部MRI数据集上,常规甘诺利优于其他方法。
translated by 谷歌翻译
我们提出了空间感知内存队列,用于从放射线照相图像中的内绘和检测异常(缩写为鱿鱼)。放射造影成像协议专注于特定的身体区域,因此在患者中产生具有良好相似性和产生复发解剖结构的图像。要利用此结构化信息,我们的鱿鱼包括一个新的内存队列和特征空间中的新型内绘制块。我们表明鱿鱼可以将根深蒂固的解剖结构分类为复发模式;在推理中,鱿鱼可以识别图像中的异常(看不见的图案)。鱿鱼在两个胸部X射线基准数据集上超过5点以上的未经监督异常检测到现有技术。此外,我们已经创建了一个新的数据集(Digitanatomy),其在胸部解剖学中合成空间相关和一致的形状。我们希望Digitanatomy可以促使异常检测方法的开发,评估和解释性,特别是用于射线照相成像。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
异常检测是确定不符合正常数据分布的样品。由于异常数据的无法获得,培训监督的深神经网络是一项繁琐的任务。因此,无监督的方法是解决此任务的常见方法。深度自动编码器已被广泛用作许多无监督的异常检测方法的基础。但是,深层自动编码器的一个显着缺点是,它们通过概括重建异常值来提供不足的表示异常检测的表示。在这项工作中,我们设计了一个对抗性框架,该框架由两个竞争组件组成,一个对抗性变形者和一个自动编码器。对抗性变形器是一种卷积编码器,学会产生有效的扰动,而自动编码器是一个深层卷积神经网络,旨在重建来自扰动潜在特征空间的图像。这些网络经过相反的目标训练,在这种目标中,对抗性变形者会产生用于编码器潜在特征空间的扰动,以最大化重建误差,并且自动编码器试图中和这些扰动的效果以最大程度地减少它。当应用于异常检测时,该提出的方法会由于对特征空间的扰动应用而学习语义上的富裕表示。所提出的方法在图像和视频数据集上的异常检测中优于现有的最新方法。
translated by 谷歌翻译
We propose a novel reconstruction-based model for anomaly detection, called Y-GAN. The model consists of a Y-shaped auto-encoder and represents images in two separate latent spaces. The first captures meaningful image semantics, key for representing (normal) training data, whereas the second encodes low-level residual image characteristics. To ensure the dual representations encode mutually exclusive information, a disentanglement procedure is designed around a latent (proxy) classifier. Additionally, a novel consistency loss is proposed to prevent information leakage between the latent spaces. The model is trained in a one-class learning setting using normal training data only. Due to the separation of semantically-relevant and residual information, Y-GAN is able to derive informative data representations that allow for efficient anomaly detection across a diverse set of anomaly detection tasks. The model is evaluated in comprehensive experiments with several recent anomaly detection models using four popular datasets, i.e., MNIST, FMNIST and CIFAR10, and PlantVillage.
translated by 谷歌翻译
新奇检测是识别不属于目标类分布的样本的任务。在培训期间,缺乏新颖的课程,防止使用传统分类方法。深度自动化器已被广泛用作许多无监督的新奇检测方法的基础。特别地,上下文自动码器在新颖的检测任务中已经成功了,因为他们通过从随机屏蔽的图像重建原始图像来学习的更有效的陈述。然而,上下文AutoEncoders的显着缺点是随机屏蔽不能一致地涵盖输入图像的重要结构,导致次优表示 - 特别是对于新颖性检测任务。在本文中,为了优化输入掩蔽,我们设计了由两个竞争网络,掩模模块和重建器组成的框架。掩码模块是一个卷积的AutoEncoder,用于生成涵盖最重要的图像的最佳掩码。或者,重建器是卷积编码器解码器,其旨在从屏蔽图像重建未受带的图像。网络训练以侵略的方式训练,其中掩模模块生成应用于给予重构的图像的掩码。以这种方式,掩码模块寻求最大化重建错误的重建错误最小化。当应用于新颖性检测时,与上下文自动置换器相比,所提出的方法学习语义上更丰富的表示,并通过更新的屏蔽增强了在测试时间的新颖性检测。 MNIST和CIFAR-10图像数据集上的新奇检测实验证明了所提出的方法对尖端方法的优越性。在用于新颖性检测的UCSD视频数据集的进一步实验中,所提出的方法实现了最先进的结果。
translated by 谷歌翻译
大型医学成像数据集变得越来越多。这些数据集中的一个普遍挑战是确保每个样本满足没有重要人工制品的最低质量要求。尽管已经开发出广泛的现有自动方法来识别医学成像中的缺陷和人工制品,但它们主要依赖于渴望数据的方法。特别是,缺乏可用于培训的手工艺品的足够扫描,在临床研究中设计和部署机器学习方面造成了障碍。为了解决这个问题,我们提出了一个具有四个主要组成部分的新颖框架:(1)一组受磁共振物理启发的手工艺发电机,以损坏大脑MRI扫描和增强培训数据集,(2)一组抽象和工程的功能,紧凑地表示图像,(3)一个特征选择过程,取决于人工制品的类别以提高分类性能,以及(4)一组受过训练以识别人工制品的支持向量机(SVM)分类器。我们的新颖贡献是三重的:首先,我们使用新型的基于物理的人工制品发生器来生成以受控的人工制品作为数据增强技术的合成脑MRI扫描。这将避免使用稀有人工制品的劳动密集型收集和标记过程。其次,我们提出了开发的大量抽象和工程图像特征,以识别9种不同的结构MRI伪像。最后,我们使用一个基于人工制品的功能选择块,该块,对于每类的人工制品,可以找到提供最佳分类性能的功能集。我们对具有人工生成的人工制品的大量数据扫描进行了验证实验,并且在一项多发性硬化症临床试验中,专家确定了真实的人工制品,这表明拟议管道表现优于传统方法。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
当前的无监督异常定位方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的错误中得出的潜在异常区域。但是,几乎所有先前的文献的主要局限性是需要使用异常图像来设置特定于类的阈值以定位异常。这限制了它们在现实的情况下的可用性,其中通常只能访问正常数据。尽管存在这一主要缺点,但只有少量作品通过在培训期间将监督整合到注意地图上,从而解决了这一限制。在这项工作中,我们提出了一种新颖的公式,不需要访问异常的图像来定义阈值。此外,与最近的工作相反,提出的约束是以更有原则的方式制定的,在约束优化方面利用了知名的知识。特别是,对先前工作中注意图的平等约束被不平等约束所取代,这允许更具灵活性。此外,为了解决基于惩罚的功能的局限性,我们采用了流行的对数栏方法的扩展来处理约束。最后,我们提出了一个替代正规化项,该项最大化了注意图的香农熵,从而减少了所提出模型的超参数量。关于脑病变细分的两个公开数据集的全面实验表明,所提出的方法基本上优于相关文献,为无监督病变细分建立了新的最新结果,而无需访问异常图像。
translated by 谷歌翻译
在视觉检查形式中对纹理表面进行工业检查的最新进展使这种检查成为可能,以实现高效,灵活的制造系统。我们提出了一个无监督的特征内存重排网络(FMR-NET),以同时准确检测各种纹理缺陷。与主流方法一致,我们采用了背景重建的概念。但是,我们创新地利用人工合成缺陷来使模型识别异常,而传统智慧仅依赖于无缺陷的样本。首先,我们采用一个编码模块来获得纹理表面的多尺度特征。随后,提出了一个基于对比的基于学习的内存特征模块(CMFM)来获得判别性表示,并在潜在空间中构建一个正常的特征记忆库,可以用作补丁级别的缺陷和快速异常得分。接下来,提出了一个新型的全球特征重排模块(GFRM),以进一步抑制残余缺陷的重建。最后,一个解码模块利用还原的功能来重建正常的纹理背景。此外,为了提高检查性能,还利用了两阶段的训练策略进行准确的缺陷恢复改进,并且我们利用一种多模式检查方法来实现噪声刺激性缺陷定位。我们通过广泛的实验来验证我们的方法,并通过多级检测方法在协作边缘进行实用的部署 - 云云智能制造方案,表明FMR-NET具有先进的检查准确性,并显示出巨大的使用潜力在启用边缘计算的智能行业中。
translated by 谷歌翻译
We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a "normal" class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our technique consistently improves all known algorithms by a wide margin.1 Unless otherwise mentioned, the use of the adjective "normal" is unrelated to the Gaussian distribution.32nd Conference on Neural Information Processing Systems (NIPS 2018),
translated by 谷歌翻译
歧视性无监督的表面异常检测的最新面积取决于外部数据集用于合成异常训练图像的外部数据集。这种方法很容易出现近乎分布异常的失败,因为由于它们与无异常区域的相似性,因此很难现实地合成这些异常。我们提出了一个基于量化的特征空间表示的架构,该架构避免了图像级异常合成要求。在没有对异常的视觉特性做出任何假设的情况下,DSR通过对学到的量化特征空间进行采样,从而在特征级别生成异常,从而允许受控的近乎分布异常。 DSR在KSDD2和MVTEC异常检测数据集上实现了最新结果。关于具有挑战性的现实世界KSDD2数据集的实验表明,DSR明显优于其他无监督的表面异常检测方法,在异常检测中提高了10%的AP,并在异常定位中提高了35%的AP。
translated by 谷歌翻译
大量标记的医学图像对于准确检测异常是必不可少的,但是手动注释是劳动密集型且耗时的。自我监督学习(SSL)是一种培训方法,可以在没有手动注释的情况下学习特定于数据的功能。在医学图像异常检测中已采用了几种基于SSL的模型。这些SSL方法有效地学习了几个特定特定图像的表示形式,例如自然和工业产品图像。但是,由于需要医学专业知识,典型的基于SSL的模型在医疗图像异常检测中效率低下。我们提出了一个基于SSL的模型,该模型可实现基于解剖结构的无监督异常检测(UAD)。该模型采用解剖学意识粘贴(Anatpaste)增强工具。 Anatpaste采用基于阈值的肺部分割借口任务来在正常的胸部X光片上创建异常,用于模型预处理。这些异常类似于实际异常,并帮助模型识别它们。我们在三个OpenSource胸部X光片数据集上评估了我们的模型。我们的模型在曲线(AUC)下展示了92.1%,78.7%和81.9%的模型,在现有UAD模型中最高。这是第一个使用解剖信息作为借口任务的SSL模型。 Anatpaste可以应用于各种深度学习模型和下游任务。它可以通过修复适当的细分来用于其他方式。我们的代码可在以下网址公开获取:https://github.com/jun-sato/anatpaste。
translated by 谷歌翻译
在图像中检测异常区域是工业监测中经常遇到的问题。一个相关的例子是对正常条件下符合特定纹理的组织和其他产品的分析,而缺陷会引入正常模式的变化。我们通过训练深层自动编码器来解决异常检测问题,我们表明,基于复杂的小波结构相似性(CW-SSIM)采用损失函数(CW-SSIM)与传统的自动编码器损失函数相比,这类图像上的检测性能出色。我们对众所周知的异常检测基准测试的实验表明,通过这种损失函数训练的简单模型可以实现可比性或优越的性能,从而利用更深入,更大,更大的计算要求的神经网络的最先进方法。
translated by 谷歌翻译
在本文中,我们认为由于专家的昂贵的像素级注释以及大量未经发布的正常和异常图像扫描,近年来近年来引起了近年来越来越多的注意力的问题。我们介绍了一个分割网络,该分割网络利用对抗学习将图像分成两种切割,其中一个落入用户提供的参考分布。这种基于对抗的选择性切割网络(ASC-Net)桥接基于簇的深度分割和基于对抗基于对抗的异常/新奇检测算法的两个域。我们的ASC网络从正常和异常的医疗扫描中学到医疗扫描中的分段异常,没有任何掩盖的监督。我们在三个公共数据集中评估这一无监督的异常分段模型,即脑肿瘤细分的Brats 2019,肝脏病变分割和脑病变细分的MS-SEG 2015,以及脑肿瘤细分的私人数据集。与现有方法相比,我们的模型展示了无监督异常分段任务中的巨大性能增益。虽然与监督学习算法相比,仍有进一步提高性能的空间,但有希望的实验结果和有趣的观察揭示了使用用户定义的知识构建无监督学习算法的医疗异常识别。
translated by 谷歌翻译
Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study.
translated by 谷歌翻译