In order for artificial neural networks to begin accurately mimicking biological ones, they must be able to adapt to new exigencies without forgetting what they have learned from previous training. Lifelong learning approaches to artificial neural networks attempt to strive towards this goal, yet have not progressed far enough to be realistically deployed for natural language processing tasks. The proverbial roadblock of catastrophic forgetting still gate-keeps researchers from an adequate lifelong learning model. While efforts are being made to quell catastrophic forgetting, there is a lack of research that looks into the importance of class ordering when training on new classes for incremental learning. This is surprising as the ordering of "classes" that humans learn is heavily monitored and incredibly important. While heuristics to develop an ideal class order have been researched, this paper examines class ordering as it relates to priming as a scheme for incremental class learning. By examining the connections between various methods of priming found in humans and how those are mimicked yet remain unexplained in life-long machine learning, this paper provides a better understanding of the similarities between our biological systems and the synthetic systems while simultaneously improving current practices to combat catastrophic forgetting. Through the merging of psychological priming practices with class ordering, this paper is able to identify a generalizable method for class ordering in NLP incremental learning tasks that consistently outperforms random class ordering.
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a classincremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively.iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
语义细分(CISS)的课堂学习学习目前是一个经过深入研究的领域,旨在通过依次学习新的语义类别来更新语义分割模型。 CISS中的一个主要挑战是克服灾难性遗忘的影响,这描述了在模型接受新的一组课程培训之后,先前学习的类的准确性突然下降。尽管在减轻灾难性遗忘方面取得了最新进展,但在CISS中特别遗忘的根本原因尚未得到很好的理解。因此,在一组实验和代表性分析中,我们证明了背景类别的语义转移和对新类别的偏见是忘记CISS的主要原因。此外,我们表明两者都在网络的更深层分类层中表现出来,而模型的早期层没有影响。最后,我们证明了如何利用背景中包含的信息在知识蒸馏和无偏见的跨透镜损失的帮助下有效地减轻两种原因。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
Although deep learning approaches have stood out in recent years due to their state-of-the-art results, they continue to suffer from catastrophic forgetting, a dramatic decrease in overall performance when training with new classes added incrementally. This is due to current neural network architectures requiring the entire dataset, consisting of all the samples from the old as well as the new classes, to update the model-a requirement that becomes easily unsustainable as the number of classes grows. We address this issue with our approach to learn deep neural networks incrementally, using new data and only a small exemplar set corresponding to samples from the old classes. This is based on a loss composed of a distillation measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to learn the new classes. Our incremental training is achieved while keeping the entire framework end-to-end, i.e., learning the data representation and the classifier jointly, unlike recent methods with no such guarantees. We evaluate our method extensively on the CIFAR-100 and Im-ageNet (ILSVRC 2012) image classification datasets, and show state-of-the-art performance.
translated by 谷歌翻译
深度神经网络(DNN)的基本限制之一是无法获取和积累新的认知能力。当出现一些新数据时,例如未在规定的对象集中识别的新对象类别,传统的DNN将无法识别它们由于它需要的基本配方。目前的解决方案通常是从新扩展的数据集中重新设计并重新学习整个网络,或者使用新的配置进行新配置以适应新的知识。这个过程与人类学习者的进程完全不同。在本文中,我们提出了一种新的学习方法,名为ACCRetionary学习(AL)以模拟人类学习,因为可以不预先指定要识别的对象集。相应的学习结构是模块化的,可以动态扩展以注册和使用新知识。在增值学习期间,学习过程不要求系统完全重新设计并重新培训,因为该组对象大小增长。在学习识别新数据类时,所提出的DNN结构不会忘记以前的知识。我们表明,新的结构和设计方法导致了一个系统,可以增长以应对增加的认知复杂性,同时提供稳定和卓越的整体性能。
translated by 谷歌翻译
在课堂增量学习(CIL)设置中,在每个学习阶段将类别组引入模型。目的是学习到目前为止观察到的所有类别的统一模型表现。鉴于视觉变压器(VIT)在常规分类设置中的最新流行,一个有趣的问题是研究其持续学习行为。在这项工作中,我们为CIL开发了一个伪造的双蒸馏变压器,称为$ \ textrm {d}^3 \ textrm {前} $。提出的模型利用混合嵌套的VIT设计,以确保数据效率和可扩展性对小数据集和大数据集。与最近的基于VIT的CIL方法相反,我们的$ \ textrm {d}^3 \ textrm {前} $在学习新任务并仍然适用于大量增量任务时不会动态扩展其体系结构。 $ \ textrm {d}^3 \ textrm {oft} $的CIL行为的改善归功于VIT设计的两个基本变化。首先,我们将增量学习视为一个长尾分类问题,其中大多数新课程的大多数样本都超过了可用于旧课程的有限范例。为了避免对少数族裔的偏见,我们建议动态调整逻辑,以强调保留与旧任务相关的表示形式。其次,我们建议在学习跨任务进行时保留空间注意图的配置。这有助于减少灾难性遗忘,通过限制模型以将注意力保留到最歧视区域上。 $ \ textrm {d}^3 \ textrm {以前} $在CIFAR-100,MNIST,SVHN和Imagenet数据集的增量版本上获得了有利的结果。
translated by 谷歌翻译
深入学习在物体识别任务中取得了显着的成功,通过像想象成像的大规模数据集的可用性。然而,在没有重放旧数据的情况下逐步学习时,深度学习系统遭受灾难性的遗忘。对于真实世界的应用,机器人还需要逐步学习新对象。此外,由于机器人提供有限的人类援助,他们必须只能从几个例子中学习。但是,非常少量的对象识别数据集和基准测试以测试机器人视觉的增量学习能力。此外,没有专门为几个例子提供用于增量对象学习的数据集或基准。为了填补这个差距,我们呈现了一个新的DataSet称为F-Siol-310(几次增量对象学习),该数据集专门捕获用于测试机器人视觉的少量增量对象学习能力。我们还提供了在F-SIOL-310上的8个增量学习算法的基准和评估,以备将来的比较。我们的结果表明,机器人视觉的几次射击增量对象学习问题远未解决。
translated by 谷歌翻译
在不同的持续学习场景中可以经验经验评估模型的能力。每种情况都定义了限制和学习环境的机会。在这里,我们挑战了持续学习文学中的当前趋势,主要是在类渐进式场景上进行实验,其中一项经验中的课程从未被重新审视。我们对这种环境的过度注重可能是对持续学习的未来研究来限制,因为类增量场景人为地加剧了灾难性的遗忘,以牺牲其他重要目标等于前向传递和计算效率。在许多现实世界环境中,实际上,重复先前遇到的概念自然地发生,有助于软化对先前知识的破坏。我们倡导更深入地研究替代持续学习场景,其中重复通过传入信息流中的设计集成。从已经现有的提案开始,我们描述了这种级别的级别与重复方案的优势可以提供更全面的持续学习模型的评估。
translated by 谷歌翻译
域分类是自然语言理解(NLU)中的基本任务,通常需要快速住宿到新的新兴域。即使新模型可访问,此约束使其无法培育所有先前的域。大多数现有的持续学习方法患有低精度和性能波动,特别是当旧数据和新数据的分布显着不同时。事实上,关键的真实问题不是没有旧数据的,而是效率效率恢复模型与整个旧数据集。是否有可能利用一些旧数据来产生高精度并保持稳定的性能,同时在不引入额外的普通公共表?在本文中,我们提出了一个可在各种环境下稳定地产生高性能的文本数据的一个封路数据不断学习模型。具体地,我们利用Fisher信息选择可以“记录”原始模型的关键信息的示例。此外,提出了一种称为动态重量整合的新颖方案,以在恢复过程中启用自由的自由学习。广泛的实验表明基线患有波动的性能,因此在实践中无用。相反,我们建议的CCFI显着且始终如一地优于平均精度高达20%的最佳最新方法,CCFI的每个组件有效地贡献了整体性能。
translated by 谷歌翻译
Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan. This ability, referred to as lifelong learning, is mediated by a rich set of neurocognitive mechanisms that together contribute to the development and specialization of our sensorimotor skills as well as to long-term memory consolidation and retrieval. Consequently, lifelong learning capabilities are crucial for computational systems and autonomous agents interacting in the real world and processing continuous streams of information. However, lifelong learning remains a long-standing challenge for machine learning and neural network models since the continual acquisition of incrementally available information from non-stationary data distributions generally leads to catastrophic forgetting or interference. This limitation represents a major drawback for state-of-the-art deep neural network models that typically learn representations from stationary batches of training data, thus without accounting for situations in which information becomes incrementally available over time. In this review, we critically summarize the main challenges linked to lifelong learning for artificial learning systems and compare existing neural network approaches that alleviate, to different extents, catastrophic forgetting. Although significant advances have been made in domain-specific learning with neural networks, extensive research efforts are required for the development of robust lifelong learning on autonomous agents and robots. We discuss well-established and emerging research motivated by lifelong learning factors in biological systems such as structural plasticity, memory replay, curriculum and transfer learning, intrinsic motivation, and multisensory integration.
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
语义分割(CSS)的持续学习是一个快速新兴的领域,其中分割模型的功能通过学习新类或新域而逐渐改善。持续学习中的一个核心挑战是克服灾难性遗忘的影响,这是指在模型对新类或领域进行培训后,准确性突然下降了先前学习的任务。在持续分类中,通常通过重播以前任务中的少量样本来克服这种挑战,但是在CSS中很少考虑重播。因此,我们研究了各种重播策略对语义细分的影响,并在类和域内的环境中评估它们。我们的发现表明,在课堂开发环境中,至关重要的是,对于缓冲区中不同类别的不同类别的分布至关重要,以避免对新学习的班级产生偏见。在域内营养设置中,通过从学习特征表示的分布或通过中位熵选择样品来选择缓冲液样品是最有效的。最后,我们观察到,有效的抽样方法有助于减少早期层中的表示形式的变化,这是忘记域内收入学习的主要原因。
translated by 谷歌翻译
事件检测任务可以帮助人们快速从复杂文本中确定域。它还可以为自然语言处理的下游任务提供强大的支持。存在仅基于大量数据实现固定型学习。当扩展到新课程时,通常需要保留原始数据并重新训练模型。事件检测任务可以终身学习新类,但是大多数现有方法都需要保留大量原始数据或面临灾难性的问题忘记。除此之外,由于缺乏实用性数据,很难获得足够的数据进行模型培训。要解决上述问题,我们在事件检测的领域定义了一项新任务,这是很少的增量事件检测。此任务要求在学习新事件类型的情况下,该模型应保留以前的类型,并且输入有限。我们根据几个event重新创建和发布基准数据集,以少数数量的事件检测任务。我们发布的数据集比该新任务中的其他数据集更合适。此外,我们提出了两种基准方法,即IFSED-K和IFSED-KP,可以以不同的方式解决任务。实验结果表明,我们的方法具有更高的F1分数,并且比基线更稳定。
translated by 谷歌翻译
深度学习模型在识别医学图像中的发现方面表现出了极大的有效性。但是,他们无法处理不断变化的临床环境,从而带来了来自不同来源的新注释的医学数据。为了利用传入的数据流,这些模型将在很大程度上受益于从新样本中依次学习,而不会忘记先前获得的知识。在本文中,我们通过应用现有的最新持续学习方法介绍了MedMnist收集中连续疾病分类的基准。特别是,我们考虑了三种连续的学习方案,即任务和班级增量学习以及新定义的跨域增量学习。疾病的任务和班级增量学习解决了对新样本进行分类的问题,而无需重新从头开始模型,而跨域增量学习解决了处理源自不同机构的数据集的问题,同时保留了先前获得的知识。我们对表现进行彻底的分析,并研究如何在这种情况下表现出灾难性遗忘的持续学习挑战。令人鼓舞的结果表明,持续学习具有推进疾病分类并为临床环境产生更强大,更有效的学习框架的主要潜力。将公开提供完整基准测试的代码存储库,数据分区和基线结果。
translated by 谷歌翻译
持续学习(CL)旨在从依次到达的任务中学习,而无需忘记以前的任务。尽管CL算法试图在到目前为止所学的所有任务中实现更高的平均测试准确性,但学习对成功的概括和下游转移至关重要。为了衡量代表性质量,我们仅使用一个小平衡数据集对所有任务进行重新培训,从而评估平均准确性,而无需对当前任务进行任何偏见的预测。我们还测试了几个下游任务,测量了学习表示的转移学习准确性。通过测试我们在Imagenet-100和Imagenet-1000上的新形式主义,我们发现使用更多的示例记忆是在学习的表示形式中产生有意义差异的唯一选择,以及大多数基于正则化或蒸馏的CL算法,都使用了示例记忆无法在课堂学习学习中学习不断有用的表示。令人惊讶的是,具有足够记忆大小的无监督(或自制的)CL可以达到与受监督对应物相当的性能。考虑到非平凡的标签成本,我们声称找到更有效的无监督CL算法,这些算法最少使用示例性记忆将是CL研究的下一个有希望的方向。
translated by 谷歌翻译
解释通常被认为是黑匣子的深神经网络的行为,尤其是当它们在人类生活的各个方面被采用时。借助可解释的机器学习的优势(可解释的ML),本文提出了一种名为灾难性遗忘的解剖器(或CFD)的新颖工具,以解释在持续学习环境中的灾难性遗忘。我们还根据我们的工具的观测值介绍了一种称为关键冻结的新方法。关于重新系统的实验表达了如何发生灾难性遗忘,尤其是表明该著名网络的哪些组成部分正在忘记。我们的新持续学习算法通过大量余量击败了各种最近的技术,证明了调查的能力。批判性冻结不仅攻击灾难性的遗忘,而且揭示了解释性。
translated by 谷歌翻译