基于神经网络的数据驱动操作员学习方案在计算力学中显示出巨大的潜力。 DeWonet是一种这样的神经网络体系结构,由于其出色的预测能力,它广泛赞赏。话虽如此,在确定性框架中设定的deponet架构面临过度拟合,概括不良和其不变形式的风险,因此无法量化与预测相关的不确定性。我们在本文中提出了一种用于操作员学习的跨贝叶斯迪维诺内特(VB-Deeponet),可以在很大程度上减轻deponet架构的这些局限性,并为用户提供有关预测阶段相关不确定性的更多信息。贝叶斯框架中设定的神经网络背后的关键思想是,神经网络的权重和偏见被视为概率分布而不是点估计,并且使用贝叶斯推理来更新其先前的分布。现在,为了管理与近似后验分布相关的计算成本,提出的VB-Deeponet使用\ textIt {变异推理}。与马尔可夫链蒙特卡洛方案不同,变异推理具有考虑高维后分布的能力,同时保持相关的计算成本较低。涵盖力学问题的不同示例,例如扩散反应,重力摆,对流扩散,以说明了所提出的VB-Deeponet的性能,并且在确定性框架中也对Deeponet集进行了比较。
translated by 谷歌翻译
机器学习中的不确定性量化(UQ)目前正在引起越来越多的研究兴趣,这是由于深度神经网络在不同领域的快速部署,例如计算机视觉,自然语言处理以及对风险敏感应用程序中可靠的工具的需求。最近,还开发了各种机器学习模型,以解决科学计算领域的问题,并适用于计算科学和工程(CSE)。物理知识的神经网络和深层操作员网络是两个这样的模型,用于求解部分微分方程和学习操作员映射。在这方面,[45]中提供了专门针对科学机器学习(SCIML)模型量身定制的UQ方法的全面研究。然而,尽管具有理论上的优点,但这些方法的实施并不简单,尤其是在大规模的CSE应用程序中,阻碍了他们在研究和行业环境中的广泛采用。在本文中,我们提出了一个开源python图书馆(https://github.com/crunch-uq4mi),称为Neuraluq,并伴有教育教程,用于以方便且结构化的方式采用SCIML的UQ方法。该图书馆既专为教育和研究目的,都支持多种现代UQ方法和SCIML模型。它基于简洁的工作流程,并促进了用户的灵活就业和易于扩展。我们首先提出了神经脉的教程,随后在四个不同的示例中证明了其适用性和效率,涉及动态系统以及高维参数和时间依赖性PDE。
translated by 谷歌翻译
对于许多工程应用,例如实时模拟或控制,潜在的非线性问题的传统解决方案技术通常是过于计算的。在这项工作中,我们提出了一种高效的深度学习代理框架,能够预测负载下的超弹性体的响应。代理模型采用特殊的卷积神经网络架构,所谓的U-Net的形式,其具有用有限元方法获得的力 - 位移数据训练。我们提出了框架的确定性和概率版本,并研究了三个基准问题。特别是,我们检查最大可能性和变分贝叶斯推论配方的能力,以评估解决方案的置信区间。
translated by 谷歌翻译
我们提出了一种基于深度学习的代理模型,用于解决高维不确定性量化和不确定性传播问题。通过将众所周知的U-Net架构与高斯门控线性网络(GGLN)集成并称为所界线线性网络引起的U-Net或Glu-Net,通过将众所周知的U-Net架构进行了开发了建议的深度学习架构。所提出的Glu-Net将不确定性传播问题视为图像回归的图像,因此是极其数据效率。此外,它还提供了预测性不确定性的估计。 Glu-Net的网络架构不太复杂,参数比当代作品较少44 \%。我们说明了所提议的Glu-net在稀疏数据场景下在不确定性下解决达西流动问题的表现。我们认为随机输入维度最高可达4225.使用香草蒙特卡罗模拟产生基准结果。即使没有关于输入的结构的信息提供对网络的结构的信息,我们也观察到所提出的Glu-Net是准确的,非常有效。通过改变训练样本大小和随机输入维度来进行案例研究以说明所提出的方法的稳健性。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
我们为由随机微分方程(SDE)控制的物理系统提出了一种新型的灰色盒建模算法。所提出的方法(称为深物理校正器(DPC))将用SDE代表的物理学与深神经网络(DNN)相结合。这里的主要思想是利用DNN来建模缺失的物理学。我们假设将不完整的物理与数据相结合将使模型可解释并允许更好地概括。与随机模拟器的训练替代模型相关的主要瓶颈通常与选择合适的损耗函数有关。在文献中可用的不同损失函数中,我们在DPC中使用有条件的最大平均差异(CMMD)损失函数,因为其证明了其性能。总体而言,物理数据融合和CMMD允许DPC从稀疏数据中学习。我们说明了拟议的DPC在文献中的四个基准示例上的性能。获得的结果高度准确,表明它可能将其作为随机模拟器的替代模型的应用。
translated by 谷歌翻译
深度操作网络〜(DeepOnet)是我们培训到近似非线性运算符的基本不同类的神经网络,包括参数局部微分方程(PDE)的解决方案操作者。即使在具有相对较小的数据集的培训时,Deeponet也显示出显着的近似和泛化功能。然而,当训练数据被噪声污染训练数据时,DeepOnets的性能恶化,这是一种经常在实践中发生的场景。为了使DeepOnets培训用嘈杂的数据,我们建议使用贝叶斯·朗格文化扩散的贝叶斯框架。这样的框架使用两个粒子,一个颗粒用于探索,另一个用于利用深度的损失功能景观。我们表明,拟议的框架勘探和开发能力使得(1)改善了嘈杂场景中的深度的培训融合和(2)附加对参数PDE的预测解决方案的不确定性估计。此外,我们表明,与用最先进的基于梯度的优化算法(例如ADAM)培训的香草LeepOnets相比,复制 - 交换廊道扩散(显着)也提高了嘈杂情景中的夜间的平均预测准确性。为了减少复制品的潜在高计算成本,在这项工作中,我们提出了一个加速培训框架,用于复制 - 交换Langevin扩散框架,利用DeepOnet的神经网络架构,以降低其计算成本高达25%,而不会影响所提出的框架的性能。最后,我们说明了在四个参数PDE问题上使用一系列实验来说明所提出的贝叶斯框架的有效性。
translated by 谷歌翻译
We propose a novel model agnostic data-driven reliability analysis framework for time-dependent reliability analysis. The proposed approach -- referred to as MAntRA -- combines interpretable machine learning, Bayesian statistics, and identifying stochastic dynamic equation to evaluate reliability of stochastically-excited dynamical systems for which the governing physics is \textit{apriori} unknown. A two-stage approach is adopted: in the first stage, an efficient variational Bayesian equation discovery algorithm is developed to determine the governing physics of an underlying stochastic differential equation (SDE) from measured output data. The developed algorithm is efficient and accounts for epistemic uncertainty due to limited and noisy data, and aleatoric uncertainty because of environmental effect and external excitation. In the second stage, the discovered SDE is solved using a stochastic integration scheme and the probability failure is computed. The efficacy of the proposed approach is illustrated on three numerical examples. The results obtained indicate the possible application of the proposed approach for reliability analysis of in-situ and heritage structures from on-site measurements.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
Kullback-Leibler(KL)差异广泛用于贝叶斯神经网络(BNNS)的变异推理。然而,KL差异具有无限性和不对称性等局限性。我们检查了更通用,有限和对称的詹森 - 香农(JS)差异。我们根据几何JS差异为BNN制定新的损失函数,并表明基于KL差异的常规损失函数是其特殊情况。我们以封闭形式的高斯先验评估拟议损失函数的差异部分。对于任何其他一般的先验,都可以使用蒙特卡洛近似值。我们提供了实施这两种情况的算法。我们证明所提出的损失函数提供了一个可以调整的附加参数,以控制正则化程度。我们得出了所提出的损失函数在高斯先验和后代的基于KL差异的损失函数更好的条件。我们证明了基于嘈杂的CIFAR数据集和有偏见的组织病理学数据集的最新基于KL差异的BNN的性能提高。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)的最新表现突破,尤其是深度学习的进步(DL),功能强大,易于使用的ML库(例如Scikit-Learn,Tensorflow,Pytorch。),Pytorch。,Pytorch。。核工程师对AI/ML的前所未有的兴趣,并增加了计算能力。对于基于物理学的计算模型,已经广泛研究了验证,验证和不确定性定量(VVUQ),并且已经开发了许多方法。但是,ML模型的VVUQ的研究相对较少,尤其是在核工程中。在这项工作中,我们专注于ML模型的UQ作为ML VVUQ的初步步骤,更具体地说,是Deep Neural Networks(DNNS),因为它们是用于回归和分类任务的最广泛使用的监督ML算法。这项工作旨在量化DNN的预测或近似不确定性,当它们用作昂贵的物理模型的替代模型时。比较了DNN UQ的三种技术,即Monte Carlo辍学(MCD),深层合奏(DE)和贝叶斯神经网络(BNNS)。两个核工程示例用于基准这些方法,(1)使用野牛代码的时间依赖性裂变气体释放数据,以及(2)基于BFBT基准测试的无效分数模拟使用痕量代码。发现这三种方法通常需要不同的DNN体系结构和超参数来优化其性能。 UQ结果还取决于可用培训数据的量和数据的性质。总体而言,所有这三种方法都可以提供对近似不确定性的合理估计。当平均预测接近测试数据时,不确定性通常较小,而BNN方法通常会产生比MCD和DE更大的不确定性。
translated by 谷歌翻译
逆问题本质上是普遍存在的,几乎在科学和工程的几乎所有领域都出现,从地球物理学和气候科学到天体物理学和生物力学。解决反问题的核心挑战之一是解决他们的不良天性。贝叶斯推论提供了一种原则性的方法来克服这一方法,通过将逆问题提出为统计框架。但是,当推断具有大幅度的离散表示的字段(所谓的“维度的诅咒”)和/或仅以先前获取的解决方案的形式可用时。在这项工作中,我们提出了一种新的方法,可以使用深层生成模型进行有效,准确的贝叶斯反转。具体而言,我们证明了如何使用生成对抗网络(GAN)在贝叶斯更新中学到的近似分布,并在GAN的低维度潜在空间中重新解决所得的推断问题,从而有效地解决了大规模的解决方案。贝叶斯逆问题。我们的统计框架保留了潜在的物理学,并且被证明可以通过可靠的不确定性估计得出准确的结果,即使没有有关基础噪声模型的信息,这对于许多现有方法来说都是一个重大挑战。我们证明了提出方法对各种反问题的有效性,包括合成和实验观察到的数据。
translated by 谷歌翻译
远期操作员的计算成本和选择适当的先前分布的计算成本挑战了贝叶斯对高维逆问题的推断。摊销的变异推理解决了这些挑战,在这些挑战中,训练神经网络以近似于现有模型和数据对的后验分布。如果以前看不见的数据和正态分布的潜在样品作为输入,则预处理的深神经网络(在我们的情况下是有条件的正常化流量)几乎没有成本的后验样品。然而,这种方法的准确性取决于高保真训练数据的可用性,由于地球的异质结构,由于地球物理逆问题很少存在。此外,准确的摊销变异推断需要从训练数据分布中汲取观察到的数据。因此,我们建议通过基于物理学的校正对有条件的归一化流量分布来提高摊销变异推断的弹性。为了实现这一目标,我们不是标准的高斯潜在分布,我们通过具有未知平均值和对角线协方差的高斯分布来对潜在分布进行参数化。然后,通过最小化校正后分布和真实后验分布之间的kullback-leibler差异来估算这些未知数量。尽管通用和适用于其他反问题,但通过地震成像示例,我们表明我们的校正步骤可提高摊销变异推理的鲁棒性,以相对于源实验数量的变化,噪声方差以及先前分布的变化。这种方法提供了伪像有限的地震图像,并评估其不确定性,其成本大致与五个反度迁移相同。
translated by 谷歌翻译
尽管基于卷积神经网络(CNN)的组织病理学图像的分类模型,但量化其不确定性是不可行的。此外,当数据偏置时,CNN可以遭受过度装备。我们展示贝叶斯-CNN可以通过自动规范并通过量化不确定性来克服这些限制。我们开发了一种新颖的技术,利用贝叶斯-CNN提供的不确定性,这显着提高了大部分测试数据的性能(约为77%的测试数据的准确性提高了约6%)。此外,我们通过非线性维度降低技术将数据投射到低尺寸空间来提供对不确定性的新颖解释。该维度降低能够通过可视化解释测试数据,并在低维特征空间中揭示数据的结构。我们表明,贝叶斯-CNN可以通过分别将假阴性和假阳性降低11%和7.7%的最先进的转移学习CNN(TL-CNN)来表现出远得更好。它具有仅为186万个参数的这种性能,而TL-CNN的参数仅为134.33亿。此外,我们通过引入随机自适应激活功能来修改贝叶斯-CNN。修改后的贝叶斯-CNN在所有性能指标上的贝叶斯-CNN略胜一筹,并显着降低了误报和误报的数量(两者减少了3%)。我们还表明,通过执行McNemar的统计显着性测试,这些结果具有统计学意义。这项工作显示了贝叶斯-CNN对现有技术的优势,解释并利用组织病理学图像的不确定性。它应该在各种医学图像分类中找到应用程序。
translated by 谷歌翻译
不确定性量化(UQ)有助于基于收集的观察和不确定域知识来制定值得信赖的预测。随着各种应用中深度学习的增加,需要使深层模型更加可靠的高效UQ方法的需求。在可以从有效处理不确定性中受益的应用中,是基于深度学习的微分方程(DE)求解器。我们适应了几种最先进的UQ方法,以获得DE解决方案的预测性不确定性,并显示出四种不同类型的结果。
translated by 谷歌翻译
物理建模对于许多现代科学和工程应用至关重要。从数据科学或机器学习的角度来看,更多的域 - 不可吻合,数据驱动的模型是普遍的,物理知识 - 通常表示为微分方程 - 很有价值,因为它与数据是互补的,并且可能有可能帮助克服问题例如数据稀疏性,噪音和不准确性。在这项工作中,我们提出了一个简单但功能强大且通用的框架 - 自动构建物理学,可以将各种微分方程集成到高斯流程(GPS)中,以增强预测准确性和不确定性量化。这些方程可以是线性或非线性,空间,时间或时空,与未知的源术语完全或不完整,等等。基于内核分化,我们在示例目标函数,方程相关的衍生物和潜在源函数之前构建了GP,这些函数全部来自多元高斯分布。采样值被馈送到两个可能性:一个以适合观测值,另一个符合方程式。我们使用美白方法来逃避采样函数值和内核参数之间的强依赖性,并开发出一种随机变分学习算法。在模拟和几个现实世界应用中,即使使用粗糙的,不完整的方程式,自动元素都显示出对香草GPS的改进。
translated by 谷歌翻译
科学机器学习已成功应用于计算物理中的逆问题和PDE发现。一个警告有关当前方法的需要是需要大量的(“清洁”)数据,以表征完整的系统响应并发现底层物理模型。贝叶斯方法可能特别有希望克服这些挑战,因为它们对稀疏和嘈杂数据的负面影响自然敏感。在本文中,我们建议使用贝叶斯神经网络(BNN),以便:1)从测量数据(例如,温度,速度场等)恢复完整的系统状态。我们使用Hamiltonian Monte-Carlo来对深层和致密的BNN的后部分布进行样本,并表明可以精确地捕获不同复杂性的物理学,而不会过度拟合。 2)恢复实例化管理物理系统的底层部分微分方程(PDE)的参数。使用训练的BNN作为系统响应的代理,我们生成可能包括控制观察到的系统的潜在PDE的衍生物的数据集,然后在空间和时间的连续衍生物之间执行顺序阈值贝叶斯线性回归(StBLR) ,恢复原始PDE参数。我们利用了BNN输出内的置信区间,并将空间衍生物累积方差引入了Stblr可能性,以减轻高度不确定的衍生数据点的影响;因此,允许更准确的参数发现。我们在应用物理和非线性动力学中逐渐展示了我们的方法。
translated by 谷歌翻译
在科学技术的许多领域中,从数据中提取理事物理学是一个关键挑战。方程发现的现有技术取决于输入和状态测量。但是,实际上,我们只能访问输出测量。我们在这里提出了一个新的框架,用于从输出测量中学习动态系统的物理学;这本质上将物理发现问题从确定性转移到随机域。提出的方法将输入模拟为随机过程,并将随机演算,稀疏学习算法和贝叶斯统计的概念融合在一起。特别是,我们将稀疏性结合起来,促进尖峰和平板先验,贝叶斯法和欧拉·马鲁山(Euler Maruyama)计划,以从数据中识别统治物理。最终的模型高效,可以进行稀疏,嘈杂和不完整的输出测量。在涉及完整状态测量和部分状态测量的几个数值示例中说明了所提出方法的功效和鲁棒性。获得的结果表明,拟议方法仅从产出测量中识别物理学的潜力。
translated by 谷歌翻译