本文对视频编码中的新范例进行了视频编码,与人类和机器的解码视频的消耗相关的视频编码。对于这样的任务,考虑了压缩视频和特征的联合传输。在本文中,我们专注于Sift关键点上的功能的考虑因素。与从原始视频中提取的SIFT关键点相比,它们可以从解码视频中提取与关键点数量的损耗以及它们的参数。为量化参数和比特率的功能研究了HEVC和VVC的这种损失。在论文中,我们建议将残差特征数据与压缩视频一起发送。因此,即使对于强烈压缩的视频,避免了整个SIFT键点信息的传输。
translated by 谷歌翻译
视频编码技术已不断改进,以更高的分辨率以更高的压缩比。但是,最先进的视频编码标准(例如H.265/HEVC和多功能视频编码)仍在设计中,该假设将被人类观看。随着深度神经网络在解决计算机视觉任务方面的巨大进步和成熟,越来越多的视频通过无人参与的深度神经网络直接分析。当计算机视觉应用程序使用压缩视频时,这种传统的视频编码标准设计并不是最佳的。尽管人类视觉系统对具有高对比度的内容一直敏感,但像素对计算机视觉算法的影响是由特定的计算机视觉任务驱动的。在本文中,我们探索并总结了计算机视觉任务的视频编码和新兴视频编码标准,机器的视频编码。
translated by 谷歌翻译
在这项工作中,我们呈现了DCC(更深层兼容的压缩),用于实时无人机的辅助边缘辅助视频分析的一个启用技术,内置于现有编解码器之上。DCC解决了一个重要的技术问题,以将流动的视频从无人机压缩到边缘,而不会严格地在边缘执行的视频分析任务的准确性和及时性。DCC通过流式视频中的每一位对视频分析同样有价值,这是对视频分析的同样有价值,这在传统的分析透视技术编解码器技术上打开了新的压缩室。我们利用特定的无人机的上下文和中级提示,从物体检测中追求保留分析质量所需的自适应保真度。我们在一个展示车辆检测应用中有原型DCC,并验证了其代表方案的效率。DCC通过基线方法减少9.5倍,在最先进的检测精度上,19-683%的速度减少了9.5倍。
translated by 谷歌翻译
视觉信号压缩是一个长期存在的问题。通过深度学习的最近进步,令人兴奋的进展已经推动。尽管压缩性能更好,但现有的端到端压缩算法仍然以速率失真优化而设计更好的信号质量。在本文中,我们表明,网络架构的设计和优化可以进一步改善压缩机器视觉。我们为机器视觉的端到端压缩的编码器提出了一种反转的瓶颈结构,这特别考虑了语义信息的有效表示。此外,我们通过将分析精度纳入优化过程来追求优化的能力,并且通过以迭代方式进一步探索具有广义速率准确优化的最优性。我们使用对象检测作为展示用于机器视觉的端到端压缩,并且广泛的实验表明,该方案在分析性能方面实现了显着的BD速率。此外,由于信号电平重建,还对其他机器视觉任务的强大泛化能力表明了该方案的承诺。
translated by 谷歌翻译
视频内容不仅是人类观看的,而且越来越多地被机器观看。例如,机器学习模型分析监视视频,以进行安全性和流量监控,通过YouTube视频搜索不适当的内容,等等。在本文中,我们提出了一个可扩展的视频编码框架,该框架通过其基础层bitstream和人类视觉通过其增强层的bitstream来支持机器视觉(特别是对象检测)。所提出的框架包括基于常规神经网络(DNN)的视频编码的组件。结果表明,与最先进的视频编解码器相比,在对象检测中,提议的框架可节省13-19%的位,同时在人类视觉任务上保持竞争力。
translated by 谷歌翻译
随着事物(AIOT)的发展,在我们的日常工作和生活中产生了大量的视觉数据,例如图像和视频。这些视觉数据不仅用于人类观察或理解,而且用于机器分析或决策,例如智能监控,自动化车辆和许多其他智能城市应用。为此,在这项工作中提出了一种用于人机和机器使用的新图像编解码器范例。首先,利用神经网络提取高级实例分割图和低级信号特征。然后,实例分割图还被表示为具有所提出的16位灰度表示的简档。之后,两个16位灰度曲线和信号特征都以无损编解码器编码。同时,设计和培训图像预测器以实现具有16位灰度曲线简曲和信号特征的一般质量图像重建。最后,使用用于高质量图像重建的有损编解码器来压缩原始图像和预测的剩余地图。通过这种设计,一方面,我们可以实现可扩展的图像压缩,以满足不同人类消费的要求;另一方面,我们可以通过解码的16位灰度分布配置,例如对象分类,检测和分割,直接在解码器侧直接实现多个机器视觉任务。实验结果表明,该建议的编解码器在PSNR和MS-SSIM方面实现了基于大多数基于学习的编解码器,并且优于传统编解码器(例如,BPG和JPEG2000)以进行图像重建。同时,它在对象检测和分割的映射方面优于现有的编解码器。
translated by 谷歌翻译
在本文中,我们建议超越建立的基于视觉的本地化方法,该方法依赖于查询图像和3D点云之间的视觉描述符匹配。尽管通过视觉描述符匹配关键点使本地化高度准确,但它具有重大的存储需求,提出了隐私问题,并需要长期对描述符进行更新。为了优雅地应对大规模定位的实用挑战,我们提出了Gomatch,这是基于视觉的匹配的替代方法,仅依靠几何信息来匹配图像键点与地图的匹配,这是轴承矢量集。我们的新型轴承矢量表示3D点,可显着缓解基于几何的匹配中的跨模式挑战,这阻止了先前的工作在现实环境中解决本地化。凭借额外的仔细建筑设计,Gomatch在先前的基于几何的匹配工作中改善了(1067m,95.7升)和(1.43m,34.7摄氏度),平均中位数姿势错误,同时需要7个尺寸,同时需要7片。与最佳基于视觉的匹配方法相比,几乎1.5/1.7%的存储容量。这证实了其对现实世界本地化的潜力和可行性,并为不需要存储视觉描述符的城市规模的视觉定位方法打开了未来努力的大门。
translated by 谷歌翻译
迄今为止,通信系统主要旨在可靠地交流位序列。这种方法提供了有效的工程设计,这些设计对消息的含义或消息交换所旨在实现的目标不可知。但是,下一代系统可以通过将消息语义和沟通目标折叠到其设计中来丰富。此外,可以使这些系统了解进行交流交流的环境,从而为新颖的设计见解提供途径。本教程总结了迄今为止的努力,从早期改编,语义意识和以任务为导向的通信开始,涵盖了基础,算法和潜在的实现。重点是利用信息理论提供基础的方法,以及学习在语义和任务感知通信中的重要作用。
translated by 谷歌翻译
在本文中,我们介绍了第一个神经视频编解码器,可以在用于低延迟模式的UVG数据集上的SRGB PSNR方面与最新编码标准H.266 / VVC竞争。现有的神经混合视频编码方法依赖于用于预测的光流或高斯尺度流,这不能支持对不同运动内容的细粒度适应性。为了更具内容 - 自适应预测,我们提出了一种新颖的跨尺度预测模块,实现更有效的运动补偿。具体地,一方面,我们生产参考特征金字塔作为预测源,然后传输利用特征尺度的横级流来控制预测的精度。另一方面,我们将加权预测的机制介绍到具有单个参考帧的预测场景的机制,其中发送交叉尺度权重映射以合成精细预测结果。除了串尺度预测模块之外,我们还提出了一种多级量化策略,这提高了在推理期间没有额外计算惩罚的速率失真性能。我们展示了我们有效的神经视频编解码器(ENVC)对几个常见的基准数据集的令人鼓舞的表现,并详细分析了每个重要组成部分的有效性。
translated by 谷歌翻译
当网络条件恶化时,视频会议系统的用户体验差,因为当前的视频编解码器根本无法在极低的比特率下运行。最近,已经提出了几种神经替代方案,可以使用每个框架的稀疏表示,例如面部地标信息,以非常低的比特率重建说话的头视频。但是,这些方法在通话过程中具有重大运动或遮挡的情况下会产生不良的重建,并且不会扩展到更高的分辨率。我们设计了Gemino,这是一种基于新型高频条件超分辨率管道的新型神经压缩系统,用于视频会议。 Gemino根据从单个高分辨率参考图像中提取的信息来增强高频细节(例如,皮肤纹理,头发等),为每个目标框架的一个非常低分辨率的版本(例如,皮肤纹理,头发等)。我们使用多尺度体系结构,该体系结构在不同的分辨率下运行模型的不同组件,从而使其扩展到可与720p相当的分辨率,并且我们个性化模型以学习每个人的特定细节,在低比特率上实现了更好的保真度。我们在AIORTC上实施了Gemino,这是WEBRTC的开源Python实现,并表明它在A100 GPU上实时在1024x1024视频上运行,比比特率的比特率低于传统的视频Codecs,以相同的感知质量。
translated by 谷歌翻译
为了利用同一场景的视频框架中的高时间相关性,使用基于块的运动估计和补偿技术从已经编码的参考帧中预测了当前帧。尽管这种方法可以有效利用移动对象的翻译运动,但它容易受到其他类型的仿射运动和对象遮挡/除含量的影响。最近,深度学习已被用来模拟人类姿势的高级结构,以从短视频中的特定动作中进行,然后通过使用生成的对抗网络(GAN)来预测姿势,从而在未来的时间内生成虚拟框架。因此,建模人姿势的高级结构能够通过预测人类的行为并确定其轨迹来利用语义相关性。视频监视应用程序将受益,因为可以通过估算人类姿势轨迹并通过语义相关性产生未来的框架来压缩存储的大监视数据。本文通过从已经编码的框架中对人姿势进行建模并在当前时间使用生成的框架来探讨一种新的视频编码方式。预计所提出的方法可以通过预测包含具有较低残差的移动对象的块来克服传统向后引用框架的局限性。实验结果表明,提出的方法平均可以实现高达2.83 dB PSNR增益和25.93 \%比特率的节省,用于高运动视频序列
translated by 谷歌翻译
我们引入基于实例自适应学习的视频压缩算法。在要传输的每个视频序列上,我们介绍了预训练的压缩模型。最佳参数与潜在代码一起发送到接收器。通过熵编码在合适的混合模型下的参数更新,我们确保可以有效地编码网络参数。该实例自适应压缩算法对于基础模型的选择是不可知的,并且具有改进任何神经视频编解码器的可能性。在UVG,HEVC和XIPH数据集上,我们的CODEC通过21%至26%的BD速率节省,提高了低延迟尺度空间流量模型的性能,以及最先进的B帧模型17至20%的BD速率储蓄。我们还证明了实例 - 自适应FineTuning改善了域移位的鲁棒性。最后,我们的方法降低了压缩模型的容量要求。我们表明它即使在将网络大小减少72%之后也能实现最先进的性能。
translated by 谷歌翻译
有效的点云压缩对于虚拟和混合现实,自动驾驶和文化遗产等应用至关重要。在本文中,我们为动态点云几何压缩提出了一个基于深度学习的框架间编码方案。我们提出了一种有损的几何压缩方案,该方案通过使用新的预测网络,使用先前的框架来预测当前帧的潜在表示。我们提出的网络利用稀疏的卷积使用层次多尺度3D功能学习来使用上一个帧编码当前帧。我们在目标坐标上采用卷积来将上一个帧的潜在表示为当前帧的降采样坐标,以预测当前帧的特征嵌入。我们的框架通过使用学习的概率分解熵模型来压缩预测功能的残差和实际特征。在接收器中,解码器层次结构通过逐步重新嵌入功能嵌入来重建当前框架。我们将我们的模型与基于最先进的视频点云压缩(V-PCC)和基于几何的点云压缩(G-PCC)方案进行了比较,该方案由Moving Picture Experts Group(MPEG)标准化。我们的方法实现了91%以上的BD率Bjontegaard三角洲率)降低了G-PCC,针对V-PCC框架内编码模式的BD率降低了62%以上,而对于V-PC。使用HEVC,基于PCC P框架的框架间编码模式。
translated by 谷歌翻译
在双胞胎输血综合征(TTTS)中,单座管胎盘中的异常血管吻合可能会在两个胎儿之间产生不均匀的流量。在当前的实践中,通过使用激光消融闭合异常吻合来对TTT进行手术治疗。该手术在最小的侵入性中依赖于胎儿镜检查。有限的视野使吻合术识别成为外科医生的具有挑战性的任务。为了应对这一挑战,我们提出了一个基于学习的框架,用于视野扩展的体内胎儿镜框架注册。该框架的新颖性依赖于基于学习的关键点提案网络以及基于胎儿镜图像细分和(ii)不一致的同符的编码策略(i)无关的关键点。我们在来自6个不同女性的6个TTT手术的6个术中序列的数据集中验证了我们的框架,这是根据最新的最新算法状态,该算法依赖于胎盘血管的分割。与艺术的状态相比,提出的框架的性能更高,为稳健的马赛克在TTTS手术期间提供背景意识铺平了道路。
translated by 谷歌翻译
传统的视频压缩(VC)方法基于运动补偿变换编码,并且由于端到端优化问题的组合性质,运动估计,模式和量化参数选择的步骤和熵编码是单独优化的。学习VC允许同时对端到端速率失真(R-D)优化非线性变换,运动和熵模型的优化训练。大多数工作都在学习VC基于R-D损耗对连续帧的对考虑连续视频编解码器的端到端优化。它在传统的VC中众所周知的是,双向编码优于顺序压缩,因为它能够使用过去和未来的参考帧。本文提出了一种学习的分层双向视频编解码器(LHBDC),其结合了分层运动补偿预测和端到端优化的益处。实验结果表明,我们达到了迄今为​​止在PSNR和MS-SSIM中的学习VC方案报告的最佳R-D结果。与传统的视频编解码器相比,我们的端到端优化编解码器的RD性能优于PSNR和MS-SSIM中的X265和SVT-HEVC编码器(“非常流”预设)以及MS-中的HM 16.23参考软件。 SSIM。我们提出了由于所提出的新颖工具,例如学习屏蔽,流场附带和时间流量矢量预测等新颖工具,展示了表现出性能提升。重现我们结果的模型和说明可以在https://github.com/makinyilmaz/lhbdc/中找到
translated by 谷歌翻译
具有基于块体系结构的运动建模已被广泛用于视频编码中,其中框架分为固定尺寸的块,这些块是独立补偿的。这通常会导致编码效率低下,因为固定尺寸的块几乎与对象边界不符。尽管已经引入了层次结构分区来解决这一问题,但运动矢量的增加限制了收益。最近,与立方体分配的图像的近似分割已经普及。可变大小的矩形片段(立方体)不仅容易适应基于块的图像/视频编码技术,而且还可以很好地与对象边界保持一致。这是因为立方分区基于同质性约束,从而最大程度地减少了平方误差的总和(SSE)。在本文中,我们研究了针对可扩展视频编码中使用的固定尺寸块的运动模型的潜力。具体而言,我们使用图片组(GOP)中的锚框的立方分区信息构建了运动补偿帧。然后,预测的当前帧已用作基础层,同时使用可扩展的HEVC编码器编码当前帧作为增强层。实验结果确认4K视频序列上节省了6.71%-10.90%的比特率。
translated by 谷歌翻译
开放程序代表全球手术的主要形式。人工智能(AI)有可能优化手术实践并改善患者结果,但努力主要集中在微创技术上。我们的工作通过策划,从YouTube,从YouTube,Open Surgical视频的最大数据集克服了培训AI模型的现有数据限制:1997年从50个国家上传的23个外科手术的视频。使用此数据集,我们开发了一种能够实时了解外科行为,手和工具的多任务AI模型 - 程序流程和外科医生技能的构建块。我们表明我们的模型推广了各种外科类型和环境。说明这种普遍性,我们直接应用了YouTube培训的模型,分析了在学术医疗中心前瞻性收集的开放式手术,并确定了与手动效率相关的外科技能的运动学描述符。我们的开放外科(AVOS)数据集和培训模式的注释视频将可用于进一步发展外科艾。
translated by 谷歌翻译
运动传输是根据来自给定驾驶视频的运动来合成单个源图像的未来视频帧的任务。由于运动表示的复杂性和驾驶视频与源图像之间的未知关系,此任务是具有挑战性的。尽管有这种困难,但这个问题吸引了近年来研究的极大兴趣,逐渐改进。问题可能被认为是运动和外观的去耦,这通常通过从关键点移动中提取运动来解决。我们选择解决通用,无监督的设置,在那里我们需要将动画应用于任何任意对象,而没有任何用于输入结构的域特定模型。在这项工作中,我们从Keypoint Heatmap中提取结构,没有明确的运动表示。然后,从图像和视频中提取来自图像的结构以根据视频,由深发电机横断图像。
translated by 谷歌翻译
我们提出了一种新颖的端到端方法,用于在事件流中进行关键点检测和跟踪,该方法比以前的方法提供了更好的精度和更长的关键点轨道。两项贡献共同努力使这成为可能。首先,我们提出了一个简单的过程来生成稳定的关键点标签,我们用来训练复发架构。该培训数据导致检测随着时间的推移非常一致。此外,我们观察到以前的按键检测方法在一段时间内集成事件的表示形式(例如时间表面)。由于需要这种集成,因此我们声称最好预测时间段的关键点的轨迹,而不是单个位置,如先前的方法中所做的那样。我们以一系列热图的形式预测这些轨迹在整合时间段。这可以改善关键点本地化。我们的体系结构也可以保持非常简单,从而导致非常快的推理时间。我们在HVGA ATIS角数据集以及“事件相机数据集和模拟器”数据集上演示了我们的方法,并将其显示为“关键点”轨道的三倍,几乎是最好的先前最佳先前最佳先前的轨道轨迹。 - 艺术方法。我们认为我们的方法可以推广到其他基于事件的相机问题,并发布我们的源代码以鼓励其他作者探索它。
translated by 谷歌翻译
面部特征跟踪是成像跳芭式(BCG)的关键组成部分,其中需要精确定量面部关键点的位移,以获得良好的心率估计。皮肤特征跟踪能够在帕金森病中基于视频的电机降解量化。传统的计算机视觉算法包括刻度不变特征变换(SIFT),加速强大的功能(冲浪)和LUCAS-KANADE方法(LK)。这些长期代表了最先进的效率和准确性,但是当存在常见的变形时,如图所示,如图所示,如此。在过去的五年中,深度卷积神经网络对大多数计算机视觉任务的传统方法表现优于传统的传统方法。我们提出了一种用于特征跟踪的管道,其应用卷积堆积的AutoEncoder,以将图像中最相似的裁剪标识到包含感兴趣的特征的参考裁剪。 AutoEncoder学会将图像作物代表到特定于对象类别的深度特征编码。我们在面部图像上培训AutoEncoder,并验证其在手动标记的脸部和手视频中通常验证其跟踪皮肤功能的能力。独特的皮肤特征(痣)的跟踪误差是如此之小,因为我们不能排除他们基于$ \ chi ^ 2 $ -test的手动标签。对于0.6-4.2像素的平均误差,我们的方法在所有情况下都表现出了其他方法。更重要的是,我们的方法是唯一一个不分歧的方法。我们得出的结论是,我们的方法为特征跟踪,特征匹配和图像配准比传统算法创建更好的特征描述符。
translated by 谷歌翻译