Understanding the 3D world without supervision is currently a major challenge in computer vision as the annotations required to supervise deep networks for tasks in this domain are expensive to obtain on a large scale. In this paper, we address the problem of unsupervised viewpoint estimation. We formulate this as a self-supervised learning task, where image reconstruction provides the supervision needed to predict the camera viewpoint. Specifically, we make use of pairs of images of the same object at training time, from unknown viewpoints, to self-supervise training by combining the viewpoint information from one image with the appearance information from the other. We demonstrate that using a perspective spatial transformer allows efficient viewpoint learning, outperforming existing unsupervised approaches on synthetic data, and obtains competitive results on the challenging PASCAL3D+ dataset.
translated by 谷歌翻译
We introduce ViewNeRF, a Neural Radiance Field-based viewpoint estimation method that learns to predict category-level viewpoints directly from images during training. While NeRF is usually trained with ground-truth camera poses, multiple extensions have been proposed to reduce the need for this expensive supervision. Nonetheless, most of these methods still struggle in complex settings with large camera movements, and are restricted to single scenes, i.e. they cannot be trained on a collection of scenes depicting the same object category. To address these issues, our method uses an analysis by synthesis approach, combining a conditional NeRF with a viewpoint predictor and a scene encoder in order to produce self-supervised reconstructions for whole object categories. Rather than focusing on high fidelity reconstruction, we target efficient and accurate viewpoint prediction in complex scenarios, e.g. 360{\deg} rotation on real data. Our model shows competitive results on synthetic and real datasets, both for single scenes and multi-instance collections.
translated by 谷歌翻译
单视图重建的方法通常依赖于观点注释,剪影,缺乏背景,同一实例的多个视图,模板形状或对称性。我们通过明确利用不同对象实例的图像之间的一致性来避免所有此类监督和假设。结果,我们的方法可以从描述相同对象类别的大量未标记图像中学习。我们的主要贡献是利用跨境一致性的两种方法:(i)渐进式调理,一种培训策略,以逐步将模型从类别中逐步专业为课程学习方式进行实例; (ii)邻居重建,具有相似形状或纹理的实例之间的损失。对于我们方法的成功也至关重要的是:我们的结构化自动编码体系结构将图像分解为显式形状,纹理,姿势和背景;差异渲染的适应性公式;以及一个新的优化方案在3D和姿势学习之间交替。我们将我们的方法(独角兽)在多样化的合成造型数据集上进行比较,这是需要多种视图作为监督的方法的经典基准 - 以及标准的实数基准(Pascal3d+ Car,Cub,Cub,Cub,Cub),大多数方法都需要已知的模板和Silhouette注释。我们还展示了对更具挑战性的现实收藏集(Compcars,LSUN)的适用性,在该收藏中,剪影不可用,图像没有在物体周围裁剪。
translated by 谷歌翻译
我们提出了IM2NERF,这是一个学习框架,该框架可以预测在野生中给出单个输入图像的连续神经对象表示,仅通过现成的识别方法进行分割输出而受到监督。构建神经辐射场的标准方法利用了多视图的一致性,需要对场景的许多校准视图,这一要求在野外学习大规模图像数据时无法满足。我们通过引入一个模型将输入图像编码到包含对象形状的代码,对象外观代码以及捕获对象图像的估计相机姿势的模型来迈出解决此缺点的一步。我们的模型条件在预测的对象表示上nerf,并使用卷渲染来从新视图中生成图像。我们将模型端到端训练大量输入图像。由于该模型仅配有单视图像,因此问题高度不足。因此,除了在合成的输入视图上使用重建损失外,我们还对新颖的视图使用辅助对手损失。此外,我们利用对象对称性和循环摄像头的姿势一致性。我们在Shapenet数据集上进行了广泛的定量和定性实验,并在开放图像数据集上进行了定性实验。我们表明,在所有情况下,IM2NERF都从野外的单视图像中实现了新视图合成的最新性能。
translated by 谷歌翻译
从2D图像中学习可变形的3D对象通常是一个不适的问题。现有方法依赖于明确的监督来建立多视图对应关系,例如模板形状模型和关键点注释,这将其在“野外”中的对象上限制了。建立对应关系的一种更自然的方法是观看四处移动的对象的视频。在本文中,我们介绍了Dove,一种方法,可以从在线可用的单眼视频中学习纹理的3D模型,而无需关键点,视点或模板形状监督。通过解决对称性诱导的姿势歧义并利用视频中的时间对应关系,该模型会自动学会从每个单独的RGB框架中分解3D形状,表达姿势和纹理,并准备在测试时间进行单像推断。在实验中,我们表明现有方法无法学习明智的3D形状,而无需其他关键点或模板监督,而我们的方法在时间上产生了时间一致的3D模型,可以从任意角度来对其进行动画和呈现。
translated by 谷歌翻译
我们介绍了Amazon Berkeley对象(ABO),这是一个新的大型数据集,旨在帮助弥合真实和虚拟3D世界之间的差距。ABO包含产品目录图像,元数据和艺术家创建的3D模型,具有复杂的几何形状和与真实的家用物体相对应的物理基础材料。我们得出了具有挑战性的基准,这些基准利用ABO的独特属性,并测量最先进的对象在三个开放问题上的最新限制,以了解实际3D对象:单视3D 3D重建,材料估计和跨域多视图对象检索。
translated by 谷歌翻译
从单个图像中的新视图综合最近实现了显着的结果,尽管在训练时需要某种形式的3D,姿势或多视图监管限制了实际情况的部署。这项工作旨在放松这些假设,可实现新颖的观看综合的条件生成模型,以完全无人监测。我们首先使用3D感知GaN制定预先列车纯粹的生成解码器模型,同时训练编码器网络将映射从潜空间颠覆到图像。然后,我们将编码器和解码器交换,并将网络作为条件GaN培训,其混合物类似于自动化器的物镜和自蒸馏。在测试时间,给定对象的视图,我们的模型首先将图像内容嵌入到潜在代码中并通过保留代码固定并改变姿势来生成它的新颖视图。我们在ShapeNet等合成数据集上测试我们的框架,如ShapeNet和无约束的自然图像集合,在那里没有竞争方法可以训练。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
学习3D对象类别的传统方法使用合成数据或手动监控。在本文中,我们提出了一种不需要手动注释的方法,而是通过观察来自移动的有利点的物体来阐述。我们的系统在两种创新上构建:暹罗视点分解网络,不太明确地比较3D形状,强大地对准不同的视频;和3D形状完成网络可以从部分观察中提取对象的完整形状。我们还展示了配置网络来执行概率预测以及几何感知数据增强方案的好处。我们在公开可用的基准上获得最先进的结果。
translated by 谷歌翻译
6D object pose estimation problem has been extensively studied in the field of Computer Vision and Robotics. It has wide range of applications such as robot manipulation, augmented reality, and 3D scene understanding. With the advent of Deep Learning, many breakthroughs have been made; however, approaches continue to struggle when they encounter unseen instances, new categories, or real-world challenges such as cluttered backgrounds and occlusions. In this study, we will explore the available methods based on input modality, problem formulation, and whether it is a category-level or instance-level approach. As a part of our discussion, we will focus on how 6D object pose estimation can be used for understanding 3D scenes.
translated by 谷歌翻译
现代计算机视觉已超越了互联网照片集的领域,并进入了物理世界,通过非结构化的环境引导配备摄像头的机器人和自动驾驶汽车。为了使这些体现的代理与现实世界对象相互作用,相机越来越多地用作深度传感器,重建了各种下游推理任务的环境。机器学习辅助的深度感知或深度估计会预测图像中每个像素的距离。尽管已经在深入估算中取得了令人印象深刻的进步,但仍然存在重大挑战:(1)地面真相深度标签很难大规模收集,(2)通常认为相机信息是已知的,但通常是不可靠的,并且(3)限制性摄像机假设很常见,即使在实践中使用了各种各样的相机类型和镜头。在本论文中,我们专注于放松这些假设,并描述将相机变成真正通用深度传感器的最终目标的贡献。
translated by 谷歌翻译
where the highest resolution is required, using facial performance capture as a case in point.
translated by 谷歌翻译
代表物体粒度的场景是场景理解和决策的先决条件。我们提出PrisMoNet,一种基于先前形状知识的新方法,用于学习多对象3D场景分解和来自单个图像的表示。我们的方法学会在平面曲面上分解具有多个对象的合成场景的图像,进入其组成场景对象,并从单个视图推断它们的3D属性。经常性编码器从输入的RGB图像中回归3D形状,姿势和纹理的潜在表示。通过可差异化的渲染,我们培训我们的模型以自我监督方式从RGB-D图像中分解场景。 3D形状在功能空间中连续表示,作为我们以监督方式从示例形状预先训练的符号距离函数。这些形状的前沿提供弱监管信号,以更好地条件挑战整体学习任务。我们评估我们模型在推断3D场景布局方面的准确性,展示其生成能力,评估其对真实图像的概括,并指出了学习的表示的益处。
translated by 谷歌翻译
我们为RGB视频提供了基于变压器的神经网络体系结构,用于多对象3D重建。它依赖于表示知识的两种替代方法:作为特征的全局3D网格和一系列特定的2D网格。我们通过专用双向注意机制在两者之间逐步交换信息。我们利用有关图像形成过程的知识,以显着稀疏注意力重量矩阵,从而使我们的体系结构在记忆和计算方面可行。我们在3D特征网格的顶部附上一个detr风格的头,以检测场景中的对象并预测其3D姿势和3D形状。与以前的方法相比,我们的体系结构是单阶段,端到端可训练,并且可以从整体上考虑来自多个视频帧的场景,而无需脆弱的跟踪步骤。我们在挑战性的SCAN2CAD数据集上评估了我们的方法,在该数据集中,我们的表现要优于RGB视频的3D对象姿势估算的最新最新方法; (2)将多视图立体声与RGB-D CAD对齐结合的强大替代方法。我们计划发布我们的源代码。
translated by 谷歌翻译
We introduce MegaPose, a method to estimate the 6D pose of novel objects, that is, objects unseen during training. At inference time, the method only assumes knowledge of (i) a region of interest displaying the object in the image and (ii) a CAD model of the observed object. The contributions of this work are threefold. First, we present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects. The shape and coordinate system of the novel object are provided as inputs to the network by rendering multiple synthetic views of the object's CAD model. Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner. Third, we introduce a large-scale synthetic dataset of photorealistic images of thousands of objects with diverse visual and shape properties and show that this diversity is crucial to obtain good generalization performance on novel objects. We train our approach on this large synthetic dataset and apply it without retraining to hundreds of novel objects in real images from several pose estimation benchmarks. Our approach achieves state-of-the-art performance on the ModelNet and YCB-Video datasets. An extensive evaluation on the 7 core datasets of the BOP challenge demonstrates that our approach achieves performance competitive with existing approaches that require access to the target objects during training. Code, dataset and trained models are available on the project page: https://megapose6d.github.io/.
translated by 谷歌翻译
从单眼图像中恢复纹理的3D网格是高度挑战的,尤其是对于缺乏3D地面真理的野外物体。在这项工作中,我们提出了网络文化,这是一个新的框架,可通过利用3D GAN预先训练的3D纹理网格合成的3D GAN的生成性先验。重建是通过在3D GAN中搜索最类似于目标网格的潜在空间来实现重建。由于预先训练的GAN以网状几何形状和纹理封装了丰富的3D语义,因此在GAN歧管内进行搜索,因此自然地使重建的真实性和忠诚度正常。重要的是,这种正则化直接应用于3D空间,从而提供了在2D空间中未观察到的网格零件的关键指导。标准基准测试的实验表明,我们的框架获得了忠实的3D重建,并在观察到的部分和未观察到的部分中都具有一致的几何形状和纹理。此外,它可以很好地推广到不太常见的网格中,例如可变形物体的扩展表达。代码在https://github.com/junzhezhang/mesh-inversion上发布
translated by 谷歌翻译
The goal of this paper is to estimate the 6D pose and dimensions of unseen object instances in an RGB-D image. Contrary to "instance-level" 6D pose estimation tasks, our problem assumes that no exact object CAD models are available during either training or testing time. To handle different and unseen object instances in a given category, we introduce Normalized Object Coordinate Space (NOCS)-a shared canonical representation for all possible object instances within a category. Our region-based neural network is then trained to directly infer the correspondence from observed pixels to this shared object representation (NOCS) along with other object information such as class label and instance mask. These predictions can be combined with the depth map to jointly estimate the metric 6D pose and dimensions of multiple objects in a cluttered scene. To train our network, we present a new contextaware technique to generate large amounts of fully annotated mixed reality data. To further improve our model and evaluate its performance on real data, we also provide a fully annotated real-world dataset with large environment and instance variation. Extensive experiments demonstrate that the proposed method is able to robustly estimate the pose and size of unseen object instances in real environments while also achieving state-of-the-art performance on standard 6D pose estimation benchmarks.
translated by 谷歌翻译
用于运动中的人类的新型视图综合是一个具有挑战性的计算机视觉问题,使得诸如自由视视频之类的应用。现有方法通常使用具有多个输入视图,3D监控或预训练模型的复杂设置,这些模型不会概括为新标识。旨在解决这些限制,我们提出了一种新颖的视图综合框架,以从单视图传感器捕获的任何人的看法生成现实渲染,其具有稀疏的RGB-D,类似于低成本深度摄像头,而没有参与者特定的楷模。我们提出了一种架构来学习由基于球体的神经渲染获得的小说视图中的密集功能,并使用全局上下文修复模型创建完整的渲染。此外,增强剂网络利用了整体保真度,即使在原始视图中的遮挡区域中也能够产生细节的清晰渲染。我们展示了我们的方法为单个稀疏RGB-D输入产生高质量的合成和真实人体演员的新颖视图。它概括了看不见的身份,新的姿势,忠实地重建面部表情。我们的方法优于现有人体观测合成方法,并且对不同水平的输入稀疏性具有稳健性。
translated by 谷歌翻译
计算机愿景中的经典问题是推断从几个可用于以交互式速率渲染新颖视图的图像的3D场景表示。以前的工作侧重于重建预定定义的3D表示,例如,纹理网格或隐式表示,例如隐式表示。辐射字段,并且通常需要输入图像,具有精确的相机姿势和每个新颖场景的长处理时间。在这项工作中,我们提出了场景表示变换器(SRT),一种方法,该方法处理新的区域的构成或未铺设的RGB图像,Infers Infers“设置 - 潜在场景表示”,并合成新颖的视图,全部在一个前馈中经过。为了计算场景表示,我们提出了视觉变压器的概括到图像组,实现全局信息集成,从而实现3D推理。一个有效的解码器变压器通过参加场景表示来参加光场以呈现新颖的视图。通过最大限度地减少新型视图重建错误,学习是通过最终到底的。我们表明,此方法在PSNR和Synthetic DataSets上的速度方面优于最近的基线,包括为纸张创建的新数据集。此外,我们展示了使用街景图像支持现实世界户外环境的交互式可视化和语义分割。
translated by 谷歌翻译
我们介绍了一种基于神经辐射场的生成3D模型的方法,仅从每个对象的单个视图训练。虽然产生现实图像不再是一项艰巨的任务,产生相应的3D结构,使得它们可以从不同视图呈现是非微不足道的。我们表明,与现有方法不同,一个不需要多视图数据来实现这一目标。具体而言,我们表明,通过将许多图像对齐,与在共享潜在空间上的单个网络调节的近似规范姿势对齐,您可以学习模型为一类对象的形状和外观的辐射字段的空间。我们通过培训模型来展示这一点,以使用仅包含每个拍摄对象的一个视图的数据集重建对象类别而没有深度或几何信息。我们的实验表明,我们实现最先进的导致单眼深度预测的综合合成和竞争结果。
translated by 谷歌翻译