金融完整性系统中的绩效指标对于维持高效且具有成本效益的操作至关重要。重要的性能指标是假阳性率。无法直接监视此指标,因为我们不确定一旦阻止用户是否不好。我们提出了一种基于调查理论和因果推理方法的统计方法,以估计系统的假阳性率或单个阻止策略。我们还建议一种新的结果匹配方法,在某些情况下,包括经验数据的表现优于其他常用方法。本文中描述的方法可以应用于其他完整性域,例如网络安全。
translated by 谷歌翻译
我们引入了一个灵活的框架,该框架可为因果推理产生高质量的几乎享用的匹配。匹配中的大多数先前工作都使用临时距离指标,通常会导致质量差,尤其是在有无关的协变量时。在这项工作中,我们学习了一个可解释的距离度量,以实现更高质量的匹配。学到的距离度量标准根据每个协变量对结果预测的贡献延伸协变量空间:这种拉伸意味着,对重要协变量的不匹配比对无关协变量的不匹配的惩罚更大。我们学习柔性距离指标的能力会导致匹配,这些匹配对于估计有条件的平均治疗效果有用。
translated by 谷歌翻译
加权方法是偏离因果效应的估计的常见工具。虽然越来越多的看似不同的方法,但其中许多可以折叠成一个统一的制度:因果最佳运输。这种新方法通过最小化治疗和对照组之间的最佳运输距离,或者更一般地,在源和目标群体之间直接针对分布平衡。我们的方法是半富集的有效和无模型,但也可以包含研究人员希望平衡的协变量的时刻或任何其他重要的功能。我们发现因果最佳运输优于竞争对手的方法,当错过倾向分数和结果模型时,表明它是一种稳健的替代普通加权方法。最后,我们证明了我们在外部对照研究中的效用检查米索前列醇与催产素治疗后骨髓出血的影响。
translated by 谷歌翻译
在制定政策指南时,随机对照试验(RCT)代表了黄金标准。但是,RCT通常是狭窄的,并且缺乏更广泛的感兴趣人群的数据。这些人群中的因果效应通常是使用观察数据集估算的,这可能会遭受未观察到的混杂和选择偏见。考虑到一组观察估计(例如,来自多项研究),我们提出了一个试图拒绝偏见的观察性估计值的元偏值。我们使用验证效应,可以从RCT和观察数据中推断出的因果效应。在拒绝未通过此测试的估计器之后,我们对RCT中未观察到的亚组的外推性效应产生了保守的置信区间。假设至少一个观察估计量在验证和外推效果方面是渐近正常且一致的,我们为我们算法输出的间隔的覆盖率概率提供了保证。为了促进在跨数据集的因果效应运输的设置中,我们给出的条件下,即使使用灵活的机器学习方法用于估计滋扰参数,群体平均治疗效应的双重稳定估计值也是渐近的正常。我们说明了方法在半合成和现实世界数据集上的特性,并表明它与标准的荟萃分析技术相比。
translated by 谷歌翻译
Although understanding and characterizing causal effects have become essential in observational studies, it is challenging when the confounders are high-dimensional. In this article, we develop a general framework $\textit{CausalEGM}$ for estimating causal effects by encoding generative modeling, which can be applied in both binary and continuous treatment settings. Under the potential outcome framework with unconfoundedness, we establish a bidirectional transformation between the high-dimensional confounders space and a low-dimensional latent space where the density is known (e.g., multivariate normal distribution). Through this, CausalEGM simultaneously decouples the dependencies of confounders on both treatment and outcome and maps the confounders to the low-dimensional latent space. By conditioning on the low-dimensional latent features, CausalEGM can estimate the causal effect for each individual or the average causal effect within a population. Our theoretical analysis shows that the excess risk for CausalEGM can be bounded through empirical process theory. Under an assumption on encoder-decoder networks, the consistency of the estimate can be guaranteed. In a series of experiments, CausalEGM demonstrates superior performance over existing methods for both binary and continuous treatments. Specifically, we find CausalEGM to be substantially more powerful than competing methods in the presence of large sample sizes and high dimensional confounders. The software of CausalEGM is freely available at https://github.com/SUwonglab/CausalEGM.
translated by 谷歌翻译
尽管近期因因果推断领域的进展,迄今为止没有关于从观察数据的收集治疗效应估算的方法。对临床实践的结果是,当缺乏随机试验的结果时,没有指导在真实情景中似乎有效的指导。本文提出了一种务实的方法,以获得从观察性研究的治疗效果的初步但稳健地估算,为前线临床医生提供对其治疗策略的信心程度。我们的研究设计适用于一个公开问题,估算Covid-19密集护理患者的拳击机动的治疗效果。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
在本文中,我们提出了一种非参数估计的方法,并推断了一般样本选择模型中因果效应参数的异质界限,初始治疗可能会影响干预后结果是否观察到。可观察到的协变量可能会混淆治疗选择,而观察结果和不可观察的结果可能会混淆。该方法提供条件效应界限作为策略相关的预处理变量的功能。它允许对身份不明的条件效应曲线进行有效的统计推断。我们使用灵活的半参数脱偏机学习方法,该方法可以适应柔性功能形式和治疗,选择和结果过程之间的高维混杂变量。还提供了易于验证的高级条件,以进行估计和错误指定的鲁棒推理保证。
translated by 谷歌翻译
特征选择是机器学习文献中的一个广泛研究的技术,主要目的是识别提供最高预测力的功能的子集。然而,在因果推断中,我们的目标是识别与治疗变量和结果相关联的一组变量(即,混杂器)。在控制混淆变量的同时,有助于我们实现对因果效应的无偏见估计,但最近的研究表明,控制纯粹结果预测因子以及混淆可以降低估计的方差。在本文中,我们提出了一种特异性设计用于因果推理的结果自适应弹性 - 网(OAENET)方法,以选择混淆和结果预测因子,以便包含在倾向得分模型或匹配机制中。 OAENET通过现有方法提供了两个主要优点:它可以在相关数据上表现出,可以应用于任何匹配方法和任何估计。此外,与最先进的方法相比,OAENET正在计算上有效。
translated by 谷歌翻译
We are interested in estimating the effect of a treatment applied to individuals at multiple sites, where data is stored locally for each site. Due to privacy constraints, individual-level data cannot be shared across sites; the sites may also have heterogeneous populations and treatment assignment mechanisms. Motivated by these considerations, we develop federated methods to draw inference on the average treatment effects of combined data across sites. Our methods first compute summary statistics locally using propensity scores and then aggregate these statistics across sites to obtain point and variance estimators of average treatment effects. We show that these estimators are consistent and asymptotically normal. To achieve these asymptotic properties, we find that the aggregation schemes need to account for the heterogeneity in treatment assignments and in outcomes across sites. We demonstrate the validity of our federated methods through a comparative study of two large medical claims databases.
translated by 谷歌翻译
由于选择偏差,观察数据估算平均治疗效果(ATE)是有挑战性的。现有作品主要以两种方式应对这一挑战。一些研究人员建议构建满足正交条件的分数函数,该函数确保已建立的估计量“正交”更加健壮。其他人探索表示模型,以实现治疗组和受控群体之间的平衡表示。但是,现有研究未能进行1)在表示空间中歧视受控单元以避免过度平衡的问题; 2)充分利用“正交信息”。在本文中,我们提出了一个基于最新协变量平衡表示方法和正交机器学习理论的中等平衡的表示学习(MBRL)框架。该框架可保护表示形式免于通过多任务学习过度平衡。同时,MBRL将噪声正交性信息纳入培训和验证阶段,以实现更好的ATE估计。与现有的最新方法相比,基准和模拟数据集的全面实验表明,我们方法对治疗效应估计的优越性和鲁棒性。
translated by 谷歌翻译
作为因果参数的平均处理效果(ATE)的估计分为两个步骤,其中在第一步中,建模治疗和结果以包含潜在的混乱,并且在第二步中,将预测插入到其中ATE估计器,例如增强逆概率加权(AIPW)估计器。由于对混乱与治疗和结果之间的非线性或未知关系的担忧,有兴趣应用非参数学方法,例如机器学习(ML)算法。一些文献建议使用两个单独的神经网络(NNS),其中网络的参数没有正则化,除了NN优化中的随机梯度下降(SGD)。我们的模拟表明,如果没有使用正则化,则AIPW估计器会受到广泛的影响。我们提出了AIPW(称为Naipw)的正常化,这在某些情况下可以有所帮助。 Naipw,可否提供与AIPW相同的属性,即双重稳健性和正交性属性。此外,如果第一步算法收敛到足够快,则在监管条件下,Naipw将是渐近正常的。我们还在NNS上施加小于中等L1正则化的偏差和方差方面比较AIPW和NAIPW的性能。
translated by 谷歌翻译
估算随机实验的因果效应是临床研究的核心。降低这些分析中的统计不确定性是统计学家的重要目标。注册管理机构,事先审判和健康记录构成了对患者的历史数据汇编,其在可能是可利用至此的患者下的历史数据。但是,大多数历史借贷方法通过牺牲严格的I型错误率控制来达到方差的减少。在这里,我们建议使用利用线性协变调整的历史数据来提高试验分析的效率而不会产生偏见。具体而言,我们在历史数据上培训预后模型,然后使用线性回归估计治疗效果,同时调整试验受试者预测结果(其预后分数)。我们证明,在某些条件下,这种预后调整程序在大类估算仪中获得了最低差异。当不符合这些条件时,预后的协变量调整仍然比原始协变量调整更有效,并且效率的增益与上述预后模型的预测准确性的衡量标准成正比,与原始协变量的线性关系的预测准确性。我们展示了使用模拟的方法和阿尔茨海默病的临床试验的再分析,并观察平均平均误差的有意义减少和估计方差。最后,我们提供了一种简化的渐近方差公式,使得能够计算这些收益的功率计算。在使用预后模型的预后模型中,可以实现10%和30%的样品尺寸减少。
translated by 谷歌翻译
通常使用参数模型进行经验领域的参数估计,并且此类模型很容易促进统计推断。不幸的是,它们不太可能足够灵活,无法充分建模现实现象,并可能产生偏见的估计。相反,非参数方法是灵活的,但不容易促进统计推断,并且仍然可能表现出残留的偏见。我们探索了影响功能(IFS)的潜力(a)改善初始估计器而无需更多数据(b)增加模型的鲁棒性和(c)促进统计推断。我们首先对IFS进行广泛的介绍,并提出了一种神经网络方法“ Multinet”,该方法使用单个体系结构寻求合奏的多样性。我们还介绍了我们称为“ Multistep”的IF更新步骤的变体,并对不同方法提供了全面的评估。发现这些改进是依赖数据集的,这表明所使用的方法与数据生成过程的性质之间存在相互作用。我们的实验强调了从业人员需要通过不同的估计器组合进行多次分析来检查其发现的一致性。我们还表明,可以改善“自由”的现有神经网络,而无需更多数据,而无需重新训练。
translated by 谷歌翻译
Observational studies are rising in importance due to the widespread accumulation of data in fields such as healthcare, education, employment and ecology. We consider the task of answering counterfactual questions such as, "Would this patient have lower blood sugar had she received a different medication?". We propose a new algorithmic framework for counterfactual inference which brings together ideas from domain adaptation and representation learning. In addition to a theoretical justification, we perform an empirical comparison with previous approaches to causal inference from observational data. Our deep learning algorithm significantly outperforms the previous state-of-the-art.
translated by 谷歌翻译
绘制因果推断的基本挑战是,任何单位都没有完全观察到反事实。此外,在观察性研究中,治疗分配可能会混淆。在不满足的条件下,已经出现了许多统计方法,这些方法在给定预处理的协变量下,包括基于倾向得分的方法,基于预后分数的方法和双重稳健方法。不幸的是,对于应用研究人员而言,没有“一定大小的”因果方法可以在普遍上表现出色。实际上,因果方法主要根据手工制作的模拟数据进行定量评估。这样的数据产生程序可能具有有限的价值,因为它们通常是现实的风格化模型。它们被简化为障碍性,缺乏现实世界数据的复杂性。对于应用研究人员,了解方法对手头数据的表现效果很好至关重要。我们的工作介绍了基于生成模型的深层框架,以验证因果推理方法。该框架的新颖性源于其产生锚定在观察到的样品的经验分布上的合成数据的能力,因此与后者几乎没有区别。该方法使用户可以为因果效应的形式和幅度指定地面真理,并将偏见作为协变量的功能。因此,模拟数据集用于评估与观察到的样本相似的数据时,各种因果估计方法的潜在性能。我们证明了Credence在广泛的仿真研究中准确评估因果估计技术的相对性能以及来自Lalonde和Project Star研究的两个现实世界数据应用的能力。
translated by 谷歌翻译
在随机对照试验中的治疗效果(TE)估计的客观评估中的中心障碍是缺乏地面真理(或验证集)来测试其表现。在本文中,我们提供了一种新的交叉验证样方法来解决这一挑战。我们程序的关键洞察力是嘈杂(但不偏不倚)差异估计可以用作RCT的一部分上的地面真理“标签”,以测试在另一部分培训的估计器的性能。我们将这种洞察力与聚集方案相结合,借助跨统计强度的大型RCT,以判断估计估计估计潜在治疗效果的能力的端到端方法。我们在亚马逊供应链中实施的709个RCT评估我们的方法。在Amazon的AB测试中,由于响应变量的重尾性,我们突出了与恢复治疗效果相关的独特困难。在这种重尾的设置中,我们的方法表明,积极低档或截断大值的程序,同时引入偏差降低了足以确保更准确地估计治疗效果的方差。
translated by 谷歌翻译
估计平均因果效应的理想回归(如果有)是什么?我们在离散协变量的设置中研究了这个问题,从而得出了各种分层估计器的有限样本方差的表达式。这种方法阐明了许多广泛引用的结果的基本统计现象。我们的博览会结合了研究因果效应估计的三种不同的方法论传统的见解:潜在结果,因果图和具有加性误差的结构模型。
translated by 谷歌翻译
经济学和医疗保健方面的许多实际决策问题寻求从观察数据中估算平均治疗效果(ATE)。双重/辩护的机器学习(DML)是观察性研究中估计吃量的普遍方法之一。但是,DML估计器可能会遇到错误的问题,甚至在倾向分数被弄错或非常接近0或1时进行极端估计。现有文献从理论的角度解决了这个问题。在本文中,我们提出了一种健壮的因果学习(RCL)方法,以抵消DML估计量的缺陷。从理论上讲,RCL估计量i)与DML估计器一样一致且双重稳健,ii)可以摆脱错误混合问题。从经验上讲,全面的实验表明,i)RCL估计器比DML估计器给出了因果参数的稳定估计,ii)RCL估计器在模拟和基准标准数据集上应用不同的机器学习模型时,RCL估计器优于传统估计器及其变体。 。
translated by 谷歌翻译
Causal learning is the key to obtaining stable predictions and answering \textit{what if} problems in decision-makings. In causal learning, it is central to seek methods to estimate the average treatment effect (ATE) from observational data. The Double/Debiased Machine Learning (DML) is one of the prevalent methods to estimate ATE. However, the DML estimators can suffer from an \textit{error-compounding issue} and even give extreme estimates when the propensity scores are close to 0 or 1. Previous studies have overcome this issue through some empirical tricks such as propensity score trimming, yet none of the existing works solves it from a theoretical standpoint. In this paper, we propose a \textit{Robust Causal Learning (RCL)} method to offset the deficiencies of DML estimators. Theoretically, the RCL estimators i) satisfy the (higher-order) orthogonal condition and are as \textit{consistent and doubly robust} as the DML estimators, and ii) get rid of the error-compounding issue. Empirically, the comprehensive experiments show that: i) the RCL estimators give more stable estimations of the causal parameters than DML; ii) the RCL estimators outperform traditional estimators and their variants when applying different machine learning models on both simulation and benchmark datasets, and a mimic consumer credit dataset generated by WGAN.
translated by 谷歌翻译