Models should be able to adapt to unseen data during test-time to avoid performance drops caused by inevitable distribution shifts in real-world deployment scenarios. In this work, we tackle the practical yet challenging test-time adaptation (TTA) problem, where a model adapts to the target domain without accessing the source data. We propose a simple recipe called \textit{Data-efficient Prompt Tuning} (DePT) with two key ingredients. First, DePT plugs visual prompts into the vision Transformer and only tunes these source-initialized prompts during adaptation. We find such parameter-efficient finetuning can efficiently adapt the model representation to the target domain without overfitting to the noise in the learning objective. Second, DePT bootstraps the source representation to the target domain by memory bank-based online pseudo-labeling. A hierarchical self-supervised regularization specially designed for prompts is jointly optimized to alleviate error accumulation during self-training. With much fewer tunable parameters, DePT demonstrates not only state-of-the-art performance on major adaptation benchmarks VisDA-C, ImageNet-C, and DomainNet-126, but also superior data efficiency, i.e., adaptation with only 1\% or 10\% data without much performance degradation compared to 100\% data. In addition, DePT is also versatile to be extended to online or multi-source TTA settings.
translated by 谷歌翻译
无监督域适应(UDA)旨在将知识从相关但不同的良好标记的源域转移到新的未标记的目标域。大多数现有的UDA方法需要访问源数据,因此当数据保密而不相配在隐私问题时,不适用。本文旨在仅使用培训的分类模型来解决现实设置,而不是访问源数据。为了有效地利用适应源模型,我们提出了一种新颖的方法,称为源假设转移(拍摄),其通过将目标数据特征拟合到冻结源分类模块(表示分类假设)来学习目标域的特征提取模块。具体而言,拍摄挖掘出于特征提取模块的信息最大化和自我监督学习,以确保目标特征通过同一假设与看不见的源数据的特征隐式对齐。此外,我们提出了一种新的标签转移策略,它基于预测的置信度(标签信息),然后采用半监督学习来将目标数据分成两个分裂,然后提高目标域中的较为自信预测的准确性。如果通过拍摄获得预测,我们表示标记转移为拍摄++。关于两位数分类和对象识别任务的广泛实验表明,拍摄和射击++实现了与最先进的结果超越或相当的结果,展示了我们对各种视域适应问题的方法的有效性。代码可用于\ url {https://github.com/tim-learn/shot-plus}。
translated by 谷歌翻译
域适应(DA)旨在将知识从标签富裕但异构的域转移到标签恐慌域,这减轻了标签努力并吸引了相当大的关注。与以前的方法不同,重点是学习域中的特征表示,一些最近的方法存在通用半监督学习(SSL)技术,直接将它们应用于DA任务,甚至实现竞争性能。最受欢迎的SSL技术之一是伪标记,可通过标记数据训练的分类器为每个未标记数据分配伪标签。但是,它忽略了DA问题的分布偏移,并且不可避免地偏置为源数据。要解决此问题,我们提出了一个名为辅助目标域导向的分类器(ATDOC)的新伪标签框架。 ATDOC通过为目标数据引入辅助分类器来缓解分类器偏置,以提高伪标签的质量。具体地,我们使用内存机制并开发两种类型的非参数分类器,即最近的质心分类器和邻域聚合,而不引入任何其他网络参数。尽管在伪分类目标中具有简单性,但具有邻域聚集的ATDOC显着优于域对齐技术和现有的SSL技术,以及甚至瘢痕标记的SSL任务。
translated by 谷歌翻译
We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling are simple and effective at improving performance of a deployed computer vision model under systematic domain shifts. We conduct a wide range of large-scale experiments and show consistent improvements irrespective of the model architecture, the pre-training technique or the type of distribution shift. At the same time, self-learning is simple to use in practice because it does not require knowledge or access to the original training data or scheme, is robust to hyperparameter choices, is straight-forward to implement and requires only a few adaptation epochs. This makes self-learning techniques highly attractive for any practitioner who applies machine learning algorithms in the real world. We present state-of-the-art adaptation results on CIFAR10-C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A (14.8% error), theoretically study the dynamics of self-supervised adaptation methods and propose a new classification dataset (ImageNet-D) which is challenging even with adaptation.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain. Prior UDA methods typically require to access the source data when learning to adapt the model, making them risky and inefficient for decentralized private data. This work tackles a practical setting where only a trained source model is available and investigates how we can effectively utilize such a model without source data to solve UDA problems. We propose a simple yet generic representation learning framework, named Source HypOthesis Transfer (SHOT). SHOT freezes the classifier module (hypothesis) of the source model and learns the target-specific feature extraction module by exploiting both information maximization and selfsupervised pseudo-labeling to implicitly align representations from the target domains to the source hypothesis. To verify its versatility, we evaluate SHOT in a variety of adaptation cases including closed-set, partial-set, and open-set domain adaptation. Experiments indicate that SHOT yields state-of-the-art results among multiple domain adaptation benchmarks.
translated by 谷歌翻译
Continual Test-Time Adaptation (CTTA) aims to adapt the source model to continually changing unlabeled target domains without access to the source data. Existing methods mainly focus on model-based adaptation in a self-training manner, such as predicting pseudo labels for new domain datasets. Since pseudo labels are noisy and unreliable, these methods suffer from catastrophic forgetting and error accumulation when dealing with dynamic data distributions. Motivated by the prompt learning in NLP, in this paper, we propose to learn an image-level visual domain prompt for target domains while having the source model parameters frozen. During testing, the changing target datasets can be adapted to the source model by reformulating the input data with the learned visual prompts. Specifically, we devise two types of prompts, i.e., domains-specific prompts and domains-agnostic prompts, to extract current domain knowledge and maintain the domain-shared knowledge in the continual adaptation. Furthermore, we design a homeostasis-based prompt adaptation strategy to suppress domain-sensitive parameters in domain-invariant prompts to learn domain-shared knowledge more effectively. This transition from the model-dependent paradigm to the model-free one enables us to bypass the catastrophic forgetting and error accumulation problems. Experiments show that our proposed method achieves significant performance gains over state-of-the-art methods on four widely-used benchmarks, including CIFAR-10C, CIFAR-100C, ImageNet-C, and VLCS datasets.
translated by 谷歌翻译
为了缓解标签的负担,无监督的域适应(UDA)旨在将知识传输到新的未标记数据集(目标)中的标记数据集(源)。尽管进展令人印象深刻,但先前的方法总是需要访问原始源数据,并开发数据相关的对准方法以以转换的学习方式识别目标样本,这可能会从源头中提高隐私问题。几个最近的研究通过利用来自源域的训练有素的白盒模型来替代解决方案,然而,它仍可能通过生成的对抗性学习泄漏原始数据。本文研究了UDA的实用和有趣的设置,其中仅在目标域中的适应期间提供了黑盒源模型(即,仅可用网络预测)。为了解决这个问题,我们提出了一个名为蒸馏和微调(用餐)的新的两步知识适应框架。考虑到目标数据结构,用餐首先将知识从源预测器蒸馏到定制的目标模型,然后微调蒸馏模型以进一步适合目标域。此外,神经网络不需要在用餐中的域中相同,甚至允许有效地适应低资源设备。三个UDA场景(即单源,多源和部分集)的经验结果确认,与最先进的数据相关的方法相比,该用途达到了高竞争力的性能。代码可用于\ url {https://github.com/tim-learn/dine/}。
translated by 谷歌翻译
尽管视觉变压器(VIT)表现出令人印象深刻的表示学习能力,但我们从经验上发现,它们不能很好地将其概括为具有以前的域泛化算法的看不见的域。在本文中,我们提出了一种基于迅速学习的新方法,以嵌入域中的源域的知识提示目标域预测。具体而言,在来自相应的源域中的VIT输入令牌之前先进行域提示。每个域提示都可以有效地学习特定于领域的知识,因为仅针对一个域进行了优化。同时,我们训练一个及时的适配器,根据学习的源域提示为每个输入图像生成适当的提示。在测试时,提示适配器生成的改编提示可以利用室外图像和源域的特征之间的相似性,以正确整合源域知识。广泛的实验是在四个基准数据集上进行的。我们的方法在平均准确性方面提高了1.4%,这是使用VIT主链改善最先进算法的3.5倍。
translated by 谷歌翻译
大多数现有的工作在几次学习中,依赖于Meta-Learning网络在大型基础数据集上,该网络通常是与目标数据集相同的域。我们解决了跨域几秒钟的问题,其中基础和目标域之间存在大移位。与未标记的目标数据的跨域几秒识别问题在很大程度上在文献中毫无根据。启动是使用自我训练解决此问题的第一个方法。但是,它使用固定的老师在标记的基础数据集上返回,以为未标记的目标样本创建软标签。由于基本数据集和未标记的数据集来自不同的域,因此将基本数据集的类域中的目标图像投影,具有固定的预制模型可能是子最优的。我们提出了一种简单的动态蒸馏基方法,以方便来自新颖/基础数据集的未标记图像。我们通过从教师网络中的未标记图像的未标记版本的预测计算并将其与来自学生网络相同的相同图像的强大版本匹配来施加一致性正常化。教师网络的参数被更新为学生网络参数的指数移动平均值。我们表明所提出的网络了解可以轻松适应目标域的表示,即使它尚未在预先预测阶段的目标专用类别训练。我们的车型优于当前最先进的方法,在BSCD-FSL基准中的5次分类,3.6%的3.6%,并在传统的域名几枪学习任务中显示出竞争性能。
translated by 谷歌翻译
Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose a contrastive affinity learning stage to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced prompt supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (with nearly $11\%$ gain on CUB-200, and $9\%$ on ImageNet-100) on overall accuracy.
translated by 谷歌翻译
深度学习模型的最新发展,捕捉作物物候的复杂的时间模式有卫星图像时间序列(坐在),大大高级作物分类。然而,当施加到目标区域从训练区空间上不同的,这些模型差没有任何目标标签由于作物物候区域之间的时间位移进行。为了解决这个无人监督跨区域适应环境,现有方法学域不变特征没有任何目标的监督,而不是时间偏移本身。因此,这些技术提供了SITS只有有限的好处。在本文中,我们提出TimeMatch,一种新的无监督领域适应性方法SITS直接占时移。 TimeMatch由两个部分组成:1)时间位移的估计,其估计具有源极训练模型的未标记的目标区域的时间偏移,和2)TimeMatch学习,它结合了时间位移估计与半监督学习到一个分类适应未标记的目标区域。我们还引进了跨区域适应的开放式访问的数据集与来自欧洲四个不同区域的旁边。在此数据集,我们证明了TimeMatch优于所有竞争的方法,通过11%的在五个不同的适应情景F1-得分,创下了新的国家的最先进的跨区域适应性。
translated by 谷歌翻译
关于无监督的域适应性(UDA)的广泛研究已将有限的实验数据集深入学习到现实世界中无约束的领域。大多数UDA接近通用嵌入空间中的对齐功能,并将共享分类器应用于目标预测。但是,由于当域差异很大时可能不存在完全排列的特征空间,因此这些方法受到了两个局限性。首先,由于缺乏目标标签监督,强制域的比对会恶化目标域的可区分性。其次,源监督分类器不可避免地偏向源数据,因此它在目标域中的表现可能不佳。为了减轻这些问题,我们建议在两个集中在不同领域的空间中同时进行特征对齐,并为每个空间创建一个针对该域的面向域的分类器。具体而言,我们设计了一个面向域的变压器(DOT),该变压器(DOT)具有两个单独的分类令牌,以学习不同的面向域的表示形式和两个分类器,以保持域的可区分性。理论保证的基于对比度的对齐和源指导的伪标签细化策略被用来探索域名和特定信息。全面的实验验证了我们的方法在几个基准上实现了最先进的方法。
translated by 谷歌翻译
部署的ML模型的基本要求是从与培训不同的测试分布中汲取的数据概括。解决此问题的一个流行解决方案是,仅使用未标记的数据将预训练的模型调整为新的域。在本文中,我们关注该问题的挑战性变体,其中访问原始源数据受到限制。虽然完全测试时间适应(FTTA)和无监督的域适应性(UDA)密切相关,但由于大多数UDA方法需要访问源数据,因此UDA的进展不容易适用于TTA。因此,我们提出了一种新方法,即Cattan,它通过放松了通过新颖的深层子空间对准策略来放松访问整个源数据的需求,从而弥合了UDA和FTTA。通过为源数据存储的子空间基础设置的最小开销,Cattan在适应过程中可以在源数据和目标数据之间进行无监督的对齐。通过对多个2D和3D Vision基准测试(Imagenet-C,Office-31,OfficeHome,Domainnet,PointDa-10)和模型体系结构进行广泛的实验评估,我们在FTTA性能方面表现出显着提高。此外,即使使用固有健壮的模型,预训练的VIT表示以及目标域中的样本可用性低,我们也会对对齐目标的实用性做出许多关键发现。
translated by 谷歌翻译
Vision Transformer(VIT)在图像处理中变得越来越流行。具体而言,我们研究了测试时间适应(TTA)对VIT的有效性,VIT是一种已经出现的技术,可以自行纠正其在测试时间期间的预测。首先,我们在VIT-B16和VIT-L16上基准了各种测试时间适应方法。结果表明,使用适当的损耗函数时,TTA对VIT有效,并且先前的投入(明智地选择调制参数)是不需要的。基于观察结果,我们提出了一种称为类条件特征对齐(CFA)的新的测试时间适应方法,该方法将类别条件分布的差异和在线源中隐藏表示的整个分布差异最小化,在线中的整个分布差异方式。图像分类任务(CIFAR-10-C,CIFAR-100-C和Imagenet-C)和域适应性(Digits DataSet和Imagenet-Sketch)的实验表明,CFA稳定地超过了各种数据集中的现有基础。我们还通过在RESNET,MLP混合和几种VIT变体(Vit-augreg,Deit和Beit)上实验来验证CFA是模型不可知论。使用BEIT主链,CFA在Imagenet-C上达到了19.8%的TOP-1错误率,表现优于现有的测试时间适应基线44.0%。这是不需要改变训练阶段的TTA方法中的最新结果。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
本文提出了一种新颖的测试时间适应策略,该策略仅使用来自目标域的未标记的在线数据来调整在源域上预先训练的模型,以减轻由于源和目标域之间的分布变化而导致的性能降低。使用未标记的在线数据调整整个模型参数可能是有害的,这是由于无监督目标的错误信号。为了减轻此问题,我们提出了一个偏僻的权重正则化,该调整重量正规化鼓励在很大程度上更新模型参数对分布移位敏感的参数,同时在测试时间适应期间稍微更新那些对变化的不敏感的参数。这种正则化使该模型能够通过利用高学习率的好处来快速适应目标域而无需性能降低。此外,我们提出了一个基于最近的源原型来对齐源和目标特征的辅助任务,这有​​助于减少分布转移并导致进一步的性能提高。我们表明,我们的方法在各种标准基准方面展示了最先进的性能,甚至超过其监督的对手。
translated by 谷歌翻译
When facing changing environments in the real world, the lightweight model on client devices suffers from severe performance drops under distribution shifts. The main limitations of the existing device model lie in (1) unable to update due to the computation limit of the device, (2) the limited generalization ability of the lightweight model. Meanwhile, recent large models have shown strong generalization capability on the cloud while they can not be deployed on client devices due to poor computation constraints. To enable the device model to deal with changing environments, we propose a new learning paradigm of Cloud-Device Collaborative Continual Adaptation, which encourages collaboration between cloud and device and improves the generalization of the device model. Based on this paradigm, we further propose an Uncertainty-based Visual Prompt Adapted (U-VPA) teacher-student model to transfer the generalization capability of the large model on the cloud to the device model. Specifically, we first design the Uncertainty Guided Sampling (UGS) to screen out challenging data continuously and transmit the most out-of-distribution samples from the device to the cloud. Then we propose a Visual Prompt Learning Strategy with Uncertainty guided updating (VPLU) to specifically deal with the selected samples with more distribution shifts. We transmit the visual prompts to the device and concatenate them with the incoming data to pull the device testing distribution closer to the cloud training distribution. We conduct extensive experiments on two object detection datasets with continually changing environments. Our proposed U-VPA teacher-student framework outperforms previous state-of-the-art test time adaptation and device-cloud collaboration methods. The code and datasets will be released.
translated by 谷歌翻译
无监督的域适应(UDA)旨在将知识从标记的源域传输到未标记的目标域。大多数现有的UDA方法通过学习域 - 不变的表示和在两个域中共享一个分类器来实现知识传输。但是,忽略与任务相关的域特定信息,并强制统一的分类器以适合两个域将限制每个域中的特征表达性。在本文中,通过观察到具有可比参数的变压器架构可以产生比CNN对应的更可转换的表示,我们提出了一个双赢的变压器框架(WINTR),它分别探讨了每个域的特定于域的知识,而同时交互式跨域知识。具体而言,我们使用变压器中的两个单独的分类令牌学习两个不同的映射,以及每个特定于域的分类器的设计。跨域知识通过源引导标签改进和与源或目标的单侧特征对齐传输,这保持了特定于域的信息的完整性。三个基准数据集的广泛实验表明,我们的方法优于最先进的UDA方法,验证利用域特定和不变性的有效性
translated by 谷歌翻译
自我监督的预审查能够为各种视觉文档理解(VDU)任务产生可转移的表示。但是,尚未研究此类表示在测试时间时适应新分配变化的能力。我们提出了Docta,这是一种用于文档的新型测试时间适应方法,该方法通过掩盖的视觉语言建模来利用交叉模式自我观察学习以及伪标签,以适应\ textit {source}域中学习的模型,以使其{source}域中为一个未标记的\ textit {textit {目标}域在测试时间。我们还使用现有的公共数据集介绍了新的基准测试,用于各种VDU任务,包括实体识别,键值提取和文档视觉问题回答任务,其中Doctta将源模型性能提高到1.79 \%(F1分数),3.43 \%(3.43 \%)(F1得分)和17.68 \%(ANLS得分),同时大大降低了目标数据的校准误差。
translated by 谷歌翻译
预训练的视觉模型(例如,剪辑)在许多下游任务中显示出有希望的零弹性概括,并具有正确设计的文本提示。最近的作品不依赖手工设计的提示,而是使用下游任务的培训数据来学习提示。虽然有效,但针对领域数据的培训却降低了模型的概括能力,使其无法看到新领域。在这项工作中,我们提出了测试时间提示调整(TPT),该方法可以通过单个测试样本即时学习自适应提示。对于图像分类,TPT通过使用置信度选择最小化熵来优化提示,以便模型在每个测试样本的不同增强视图上都具有一致的预测。在评估对自然分布变化的概括时,TPT平均将零击的TOP-1精度提高了3.6%,超过了先前需要其他特定于任务的训练数据的迅速调整方法。在评估看不见类别的跨数据集泛化时,TPT与使用其他培训数据的最先进方法相当。项目页面:https://azshue.github.io/tpt。
translated by 谷歌翻译