Vision-based tactile sensors have gained extensive attention in the robotics community. The sensors are highly expected to be capable of extracting contact information i.e. haptic information during in-hand manipulation. This nature of tactile sensors makes them a perfect match for haptic feedback applications. In this paper, we propose a contact force estimation method using the vision-based tactile sensor DIGIT, and apply it to a position-force teleoperation architecture for force feedback. The force estimation is done by building a depth map for DIGIT gel surface deformation measurement and applying a regression algorithm on estimated depth data and ground truth force data to get the depth-force relationship. The experiment is performed by constructing a grasping force feedback system with a haptic device as a leader robot and a parallel robot gripper as a follower robot, where the DIGIT sensor is attached to the tip of the robot gripper to estimate the contact force. The preliminary results show the capability of using the low-cost vision-based sensor for force feedback applications.
translated by 谷歌翻译
软机器人抓手有助于富含接触的操作,包括对各种物体的强大抓握。然而,软抓手的有益依从性也会导致重大变形,从而使精确的操纵具有挑战性。我们提出视觉压力估计与控制(VPEC),这种方法可以使用外部摄像头的RGB图像施加的软握力施加的压力。当气动抓地力和肌腱握力与平坦的表面接触时,我们为视觉压力推断提供了结果。我们还表明,VPEC可以通过对推断压力图像的闭环控制进行精确操作。在我们的评估中,移动操纵器(来自Hello Robot的拉伸RE1)使用Visual Servoing在所需的压力下进行接触;遵循空间压力轨迹;并掌握小型低调的物体,包括microSD卡,一分钱和药丸。总体而言,我们的结果表明,对施加压力的视觉估计可以使软抓手能够执行精确操作。
translated by 谷歌翻译
机器人系统的远程操作用于精确而精致的物体抓握需要高保真的触觉反馈,以获取有关抓握的全面实时信息。在这种情况下,最常见的方法是使用动力学反馈。但是,单个接触点信息不足以检测软件的动态变化形状。本文提出了一个新型的远程触发系统,该系统可为用户的手提供动感和皮肤刺激,以通过灵敏地操纵可变形物体(即移液器)来实现准确的液体分配。实验结果表明,为用户提供多模式触觉反馈的建议方法大大提高了用远程移液器的剂量质量。与纯视觉反馈相比,当用户用多模式触觉界面与视觉反馈混合使用多模式触觉接口时,相对给药误差减少了66 \%,任务执行时间减少了18 \%。在CoVID-19,化学实验,有机材料和伸缩性的抗体测试期间,可以在精致的给药程序中实施该提出的技术。
translated by 谷歌翻译
可靠的机器人抓握,特别是具有可变形物体(例如水果),由于与夹持器,未知的物体动态和可变物体几何形状的欠扰接触相互作用,仍然是一个具有挑战性的任务。在这项研究中,我们提出了一种用于刚性夹持器的基于变压器的机器人抓握框架,其利用触觉和可视信息来用于安全对象抓握。具体地,变压器模型通过执行两个预定义的探索动作(夹紧和滑动)来学习具有传感器反馈的物理特征嵌入,并通过多层的Perceptron(MLP)预测最终抓握结果,具有给定的抓握强度。使用这些预测,通过推断使用用于抓握任务的安全抓握强度的抓握器。与卷积复制网络相比,变压器模型可以在图像序列上捕获长期依赖性,并同时处理空间时间特征。我们首先在公共数据集上基准测试在公共数据集上进行滑动检测。在此之后,我们表明变压器模型在掌握精度和计算效率方面优于CNN + LSTM模型。我们还收集我们自己的水果掌握数据集,并使用所看到和看不见的果实的拟议框架进行在线掌握实验。我们的代码和数据集在Github上公开。
translated by 谷歌翻译
我们研究了如何将高分辨率触觉传感器与视觉和深度传感结合使用,以改善掌握稳定性预测。在模拟高分辨率触觉传感的最新进展,尤其是触觉模拟器,使我们能够评估如何结合感应方式训练神经网络。借助训练大型神经网络所需的大量数据,机器人模拟器提供了一种快速自动化数据收集过程的方法。我们通过消融研究扩展现有工作,并增加了从YCB基准组中获取的一组对象。我们的结果表明,尽管视觉,深度和触觉感测的组合为已知对象提供了最佳预测结果,但该网络未能推广到未知对象。我们的工作还解决了触觉模拟中机器人抓握的现有问题以及如何克服它们。
translated by 谷歌翻译
我们提出了一个本体感受的远程操作系统,该系统使用反身握把算法来增强拾取任务的速度和稳健性。该系统由两个使用准直接驱动驱动的操纵器组成,以提供高度透明的力反馈。末端效应器具有双峰力传感器,可测量3轴力信息和2维接触位置。此信息用于防滑和重新磨碎反射。当用户与所需对象接触时,重新抓紧反射将抓地力的手指与对象上的抗肌点对齐,以最大程度地提高抓握稳定性。反射仅需150毫秒即可纠正用户选择的不准确的grasps,因此用户的运动仅受到Re-Grasp的执行的最小干扰。一旦建立了抗焦点接触,抗滑动反射将确保抓地力施加足够的正常力来防止物体从抓地力中滑出。本体感受器的操纵器和反射抓握的结合使用户可以高速完成远程操作的任务。
translated by 谷歌翻译
现代的机器人操纵系统缺乏人类的操纵技巧,部分原因是它们依靠围绕视觉数据的关闭反馈循环,这会降低系统的带宽和速度。通过开发依赖于高带宽力,接触和接近数据的自主握力反射,可以提高整体系统速度和鲁棒性,同时减少对视力数据的依赖。我们正在开发一个围绕低渗透的高速手臂建造的新系统,该系统用敏捷的手指结合了一个高级轨迹计划器,以小于1 Hz的速度运行,低级自主反射控制器的运行量超过300 Hz。我们通过将成功的基线控制器和反射握把控制器的变化的成功抓Grasps的体积和反射系统的体积进行比较,从而表征了反射系统,发现我们的控制器将成功的掌握率与基线相比扩大了55%。我们还使用简单的基于视觉的计划者在自主杂波清除任务中部署了反身抓握控制器,在清除100多个项目的同时,达到了超过90%的成功率。
translated by 谷歌翻译
机器人仿真一直是数据驱动的操作任务的重要工具。但是,大多数现有的仿真框架都缺乏与触觉传感器的物理相互作用的高效和准确模型,也没有逼真的触觉模拟。这使得基于触觉的操纵任务的SIM转交付仍然具有挑战性。在这项工作中,我们通过建模接触物理学来整合机器人动力学和基于视觉的触觉传感器的模拟。该触点模型使用机器人最终效应器上的模拟接触力来告知逼真的触觉输出。为了消除SIM到真实传输差距,我们使用现实世界数据校准了机器人动力学,接触模型和触觉光学模拟器的物理模拟器,然后我们在零摄像机上演示了系统的有效性 - 真实掌握稳定性预测任务,在各种对象上,我们达到平均准确性为90.7%。实验揭示了将我们的模拟框架应用于更复杂的操纵任务的潜力。我们在https://github.com/cmurobotouch/taxim/tree/taxim-robot上开放仿真框架。
translated by 谷歌翻译
我们提出了一个深度的视觉效果模型,以实时估算可变形容器内部的液体,以一种本体感受的方式融合了两种感官方式,即RGB摄像机的原始视觉输入和我们特定触觉传感器的触觉提示,额外的传感器校准。机器人系统是根据估计模型实时控制和调整的。我们作品的主要贡献和新颖性列出如下:1)通过开发具有多模式卷积网络的端到端预测模型来探索液体体积估算的一种本体感受方式,该模型在高精度上获得了高度的精度,该模型在周围的错误中获得了错误实验验证中的2 mL。 2)提出了一个多任务学习体系结构,可全面考虑分类和回归任务的损失,并相对评估收集的数据和实际机器人平台上每个变体的性能。 3)利用本体感受的机器人系统准确地服务和控制所需的液体,该液体连续地实时流入可变形容器。 4)根据实时液体体积预测,自适应调整抓地力计划,以实现更稳定的抓握和操作。
translated by 谷歌翻译
在现代制造环境中,对接触式任务的需求正在迅速增长。但是,很少有传统的机器人组装技能考虑任务执行过程中的环境限制,并且大多数人将这些限制作为终止条件。在这项研究中,我们提出了基于推动的混合位置/力组装技能,该技能可以在任务执行过程中最大化环境限制。据我们所知,这是在执行程序集任务期间使用推动操作考虑的第一项工作。我们已经证明,我们的技能可以使用移动操纵器系统组装任务实验最大化环境约束的利用,并在执行中实现100 \%的成功率。
translated by 谷歌翻译
我们引入了一个球形指尖传感器进行动态操作。它基于气压压力和飞行时间接近传感器,并且是低延迟,紧凑且身体健壮的。传感器使用训练有素的神经网络根据压力传感器的数据来估计接触位置和三轴接触力,这些数据嵌入了传感器的聚氨酯橡胶范围内。飞行器传感器朝三个不同的外向方向面对,并且一个集成的微控制器样品以200 Hz的速度每个单个传感器。为了量化系统潜伏期对动态操作性能的影响,我们开发和分析了一个称为碰撞脉冲比率的度量,并表征了我们新传感器的端到端潜伏期。我们还向传感器提出了实验演示,包括测量接触过渡,进行粗大映射,与移动物体保持接触力以及避免碰撞的反应。
translated by 谷歌翻译
共处的触觉传感是一种基本的启发技术,用于灵巧操纵。然而,可变形的传感器在机器人,握住的对象和环境之间引入了复杂的动力学,必须考虑进行精细操纵。在这里,我们提出了一种学习软触觉传感器膜动力学的方法,该动力学解释了由握把对象和环境之间的物理相互作用引起的传感器变形。我们的方法将膜的感知3D几何形状与本体感受反应扳手结合在一起,以预测以机器人作用为条件的未来变形。从膜的几何形状和反应扳手中回收了抓握的物体姿势,从触觉观察模型中解耦相互作用动力学。我们在两个现实世界的接触任务上基准了我们的方法:用握把标记和手中旋转的绘画。我们的结果表明,明确建模膜动力学比基准实现了更好的任务性能和对看不见的对象的概括。
translated by 谷歌翻译
Robots have been brought to work close to humans in many scenarios. For coexistence and collaboration, robots should be safe and pleasant for humans to interact with. To this end, the robots could be both physically soft with multimodal sensing/perception, so that the robots could have better awareness of the surrounding environment, as well as to respond properly to humans' action/intention. This paper introduces a novel soft robotic link, named ProTac, that possesses multiple sensing modes: tactile and proximity sensing, based on computer vision and a functional material. These modalities come from a layered structure of a soft transparent silicon skin, a polymer dispersed liquid crystal (PDLC) film, and reflective markers. Here, the PDLC film can switch actively between the opaque and the transparent state, from which the tactile sensing and proximity sensing can be obtained by using cameras solely built inside the ProTac link. In this paper, inference algorithms for tactile proximity perception are introduced. Evaluation results of two sensing modalities demonstrated that, with a simple activation strategy, ProTac link could effectively perceive useful information from both approaching and in-contact obstacles. The proposed sensing device is expected to bring in ultimate solutions for design of robots with softness, whole-body and multimodal sensing, and safety control strategies.
translated by 谷歌翻译
使机器人能够靠近人类工作,需要一个控制框架,该框架不仅包括用于自主和协调的交互的多感官信息,而且还具有感知的任务计划,以确保适应性和灵活的协作行为。在这项研究中,提出了一种直观的任务堆叠(ISOT)制剂,通过考虑人臂姿势和任务进展来定义机器人的动作。该框架以visuo-tactive信息增强,以有效地了解协作环境,直观地在计划的子任务之间切换。来自深度摄像机的视觉反馈监视并估计物体的姿势和人臂姿势,而触觉数据提供勘探技能以检测和维持所需的触点以避免物体滑动。为了评估由人类和人机合作伙伴执行的所提出的框架,装配和拆卸任务的性能,有效性和可用性,使用不同的评估指标进行考虑和分析,方法适应,掌握校正,任务协调延迟,累积姿势偏差,以及任务重复性。
translated by 谷歌翻译
本文的目的是描述一种在实时反馈中检测滑动和接触力的方法。在这种新颖的方法中,戴维斯相机由于其快速处理速度和高分辨率而被用作视觉触觉传感器。在具有不同形状,尺寸,重量和材料的四个物体上进行两百实验,以比较Baxter机器人夹持器的精度和响应以避免滑动。通过使用力敏感电阻(FSR402)验证了先进的方法。使用Davis Camera捕获的事件通过特定算法处理,以向允许其检测滑动的Baxter Robot提供反馈。
translated by 谷歌翻译
预计机器人将掌握形状,重量或材料类型各不相同的广泛物体。因此,为机器人提供类似于人类的触觉功能对于涉及人与人机或机器人与机器人相互作用的应用至关重要,尤其是在那些期望机器人掌握和操纵以前未遇到的复杂物体的情况下。成功的对象掌握和操纵的关键方面是使用配备多个高性能传感器的高质量指尖,在特定的接触表面上适当分布。在本文中,我们介绍了使用两种不同类型的市售机器人指尖(Biotac和wts-ft)的使用的详细分析,每个机器人指尖(Biotac和wts-ft)配备了分布在指尖的接触表面上的多个传感器。我们进一步证明,由于指尖的高性能,不需要一种复杂的自适应抓握算法来抓住日常物体。我们得出的结论是,只要相关的指尖表现出较高的灵敏度,基于比例控制器的简单算法就足够了。在量化的评估中,我们还证明,部分由于传感器的分布,基于BioTAC的指尖的性能优于WTS-FT设备,可以使负载升高至850G,并且简单的比例控制器可以适应该载荷即使对象面临重大的外部振动挑战,也要掌握。
translated by 谷歌翻译
通过触觉反馈感知物体滑移的能力使人类能够完成复杂的操纵任务,包括保持稳定的掌握。尽管触觉信息用于许多应用程序,但触觉传感器尚未在工业机器人设置中广泛部署。挑战的一部分在于从触觉数据流中识别滑移和其他事件。在本文中,我们提出了一种基于学习的方法,可以使用气压触觉传感器检测滑移。这些传感器具有许多理想的属性,包括高耐用性和可靠性,并且由廉价的现成组件构建。我们训练一个时间卷积神经网络来检测滑动,达到高检测精度,同时表现出稳健性,以对滑动运动的速度和方向。此外,我们在涉及各种常见对象的两项操纵任务上测试了探测器,并证明了对训练期间看不到的现实情况的成功概括。我们认为,气压触觉传感技术与数据驱动的学习相结合,适用于许多操纵任务,例如滑移补偿。
translated by 谷歌翻译
布料的机器人操作的应用包括织物制造业到处理毯子和洗衣。布料操作对于机器人而言是挑战,这主要是由于它们的高度自由度,复杂的动力学和折叠或皱巴巴配置时的严重自我闭合。机器人操作的先前工作主要依赖于视觉传感器,这可能会对细粒度的操纵任务构成挑战,例如从一堆布上抓住所需数量的布料层。在本文中,我们建议将触觉传感用于布操作;我们将触觉传感器(Resin)连接到弗兰卡机器人的两个指尖之一,并训练分类器,以确定机器人是否正在抓住特定数量的布料层。在测试时间实验中,机器人使用此分类器作为其政策的一部分,使用触觉反馈来掌握一两个布层,以确定合适的握把。实验结果超过180次物理试验表明,与使用图像分类器的方法相比,所提出的方法优于不使用触觉反馈并具有更好地看不见布的基准。代码,数据和视频可在https://sites.google.com/view/reskin-cloth上找到。
translated by 谷歌翻译
我们提出了6D(种子)中系列弹性末端效应器的框架,其将空间兼容的元素结合在粘合性感觉中,以掌握和操纵野外的工具。我们的框架将串联弹性的益处推广到6- DOF,同时提供使用粘液触觉感测的控制抽象。我们提出了一种用于粘合性感测的相对姿势估计的算法,以及能够实现与环境的稳定力相互作用的空间混合力力位置控制器。我们展示了我们对需要监管空间力量的工具的效果。视频链接:https://youtu.be/2-yuifspdrk
translated by 谷歌翻译
触摸感在使人类能够理解和与周围环境互动方面发挥着关键作用。对于机器人,触觉感应也是不可替代的。在与物体交互时,触觉传感器为机器人提供了理解物体的有用信息,例如分布式压力,温度,振动和纹理。在机器人抓住期间,视力通常由其最终效应器封闭,而触觉感应可以测量视觉无法访问的区域。在过去的几十年中,已经为机器人开发了许多触觉传感器,并用于不同的机器人任务。在本章中,我们专注于使用触觉对机器人抓握的触觉,并研究近期对物质性质的触觉趋势。我们首先讨论了术语,即形状,姿势和材料特性对三个重要的物体特性的触觉感知。然后,我们通过触觉感应审查抓握稳定性预测的最新发展。在这些作品中,我们确定了在机器人抓握中协调视觉和触觉感应的要求。为了证明使用触觉传感来提高视觉感知,介绍了我们最近的抗议重建触觉触觉感知的发展。在所提出的框架中,首先利用相机视觉的大型接收领域以便快速搜索含有裂缝的候选区域,然后使用高分辨率光学触觉传感器来检查这些候选区域并重建精制的裂缝形状。实验表明,我们所提出的方法可以实现0.82mm至0.24mm的平均距离误差的显着降低,以便重建。最后,我们在讨论了对机器人任务中施加触觉感应的公开问题和未来方向的讨论。
translated by 谷歌翻译