在这项工作中,我们将时间系列预测解决为计算机视觉任务。我们将输入数据捕获为图像并培训模型以产生后续图像。这种方法导致预测分布而不是点的值。为了评估我们方法的稳健性和质量,我们检查各种数据集和多个评估指标。我们的实验表明,我们的预测工具对循环数据有效,但对于股票价格的不规则数据有点少。重要的是,在使用基于图像的评估指标时,我们发现我们的方法以优于各种基线,包括Arima,以及我们的深度学习方法的数值变化。
translated by 谷歌翻译
在这项工作中,我们将时间系列预测解决为计算机视觉任务。我们将输入数据捕获为图像并培训模型以产生后续图像。这种方法导致预测分布而不是点的值。为了评估我们方法的稳健性和质量,我们检查各种数据集和多个评估指标。我们的实验表明,我们的预测工具对循环数据有效,但对于股票价格的不规则数据有点少。重要的是,在使用基于图像的评估指标时,我们发现我们的方法以优于各种基线,包括Arima,以及我们的深度学习方法的数值变化。
translated by 谷歌翻译
特征提取方法有助于降低维度并捕获相关信息。在时间序列预测(TSF)中,功能可以用作辅助信息,以实现更好的准确性。传统上,TSF中使用的功能是手工制作的,需要域知识和重要的数据工程工作。在这项研究中,我们首先介绍了静态和动态功能的概念,然后使我们能够开发自主功能,以检索不需要域知识的静态特征(FRAN)的自动回归网络(FRAN)。该方法基于CNN分类器,该分类器经过训练,可以为每个系列创建一个集体和独特的类表示,要么是从该系列的部分中或(如果可以使用的类标签),从一组同一类中。它允许以相似的行为区分序列,但要从不同的类别中进行区分,并使从分类器提取的特征具有最大歧视性。我们探讨了我们功能的解释性,并评估预测元学习环境中该方法的预测能力。我们的结果表明,在大多数情况下,我们的功能会提高准确性。一旦训练,我们的方法就会创建比统计方法快的阶数级级。
translated by 谷歌翻译
Probabilistic forecasting, i.e. estimating the probability distribution of a time series' future given its past, is a key enabler for optimizing business processes. In retail businesses, for example, forecasting demand is crucial for having the right inventory available at the right time at the right place. In this paper we propose DeepAR, a methodology for producing accurate probabilistic forecasts, based on training an auto-regressive recurrent network model on a large number of related time series. We demonstrate how by applying deep learning techniques to forecasting, one can overcome many of the challenges faced by widely-used classical approaches to the problem. We show through extensive empirical evaluation on several real-world forecasting data sets accuracy improvements of around 15% compared to state-of-the-art methods.
translated by 谷歌翻译
传染病仍然是全世界人类疾病和死亡的主要因素之一,其中许多疾病引起了流行的感染波。特定药物和预防疫苗防止大多数流行病的不可用,这使情况变得更糟。这些迫使公共卫生官员,卫生保健提供者和政策制定者依靠由流行病的可靠预测产生的预警系统。对流行病的准确预测可以帮助利益相关者调整对手的对策,例如疫苗接种运动,人员安排和资源分配,以减少手头的情况,这可以转化为减少疾病影响的影响。不幸的是,大多数过去的流行病(例如,登革热,疟疾,肝炎,流感和最新的Covid-19)表现出非线性和非平稳性特征,这是由于它们基于季节性依赖性变化以及这些流行病的性质的扩散波动而引起的。 。我们使用基于最大的重叠离散小波变换(MODWT)自动回归神经网络分析了各种流行时期时间序列数据集,并将其称为EWNET。 MODWT技术有效地表征了流行时间序列中的非平稳行为和季节性依赖性,并在拟议的集合小波网络框架中改善了自回旋神经网络的预测方案。从非线性时间序列的角度来看,我们探讨了所提出的EWNET模型的渐近平稳性,以显示相关的马尔可夫链的渐近行为。我们还理论上还研究了学习稳定性的效果以及在拟议的EWNET模型中选择隐藏的神经元的选择。从实际的角度来看,我们将我们提出的EWNET框架与以前用于流行病预测的几种统计,机器学习和深度学习模型进行了比较。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
地下水位预测是一个应用时间序列预测任务,具有重要的社会影响,以优化水管理以及防止某些自然灾害:例如,洪水或严重的干旱。在文献中已经报告了机器学习方法以实现这项任务,但它们仅专注于单个位置的地下水水平的预测。一种全球预测方法旨在利用从各个位置的地下水级时序列序列,一次在一个地方或一次在几个地方产生预测。鉴于全球预测方法在著名的竞争中取得了成功,因此在地下水级别的预测上进行评估并查看它们与本地方法的比较是有意义的。在这项工作中,我们创建了一个1026地下水级时序列的数据集。每个时间序列都是由每日测量地下水水平和两个外源变量,降雨和蒸散量制成的。该数据集可向社区提供可重现性和进一步评估。为了确定最佳的配置,可以有效地预测完整的时间序列的地下水水平,我们比较了包括本地和全球时间序列预测方法在内的不同预测因子。我们评估了外源变量的影响。我们的结果分析表明,通过训练过去的地下水位和降雨数据的全球方法获得最佳预测。
translated by 谷歌翻译
使用变压器的深度学习最近在许多重要领域取得了很大的成功,例如自然语言处理,计算机视觉,异常检测和推荐系统等。在变压器的几种优点中,对于时间序列预测,捕获远程时间依赖性和相互作用的能力是可取的,从而导致其在各种时间序列应用中的进步。在本文中,我们为非平稳时间序列构建了变压器模型。这个问题具有挑战性,但至关重要。我们为基于小波的变压器编码器体系结构提供了一个新颖的单变量时间序列表示学习框架,并将其称为W-Transformer。所提出的W-Transformer使用最大重叠离散小波转换(MODWT)到时间序列数据,并在分解数据集上构建本地变压器,以生动地捕获时间序列中的非机构性和远程非线性依赖性。在来自各个领域的几个公共基准时间序列数据集和具有不同特征的几个公开基准时间序列数据集上评估我们的框架,我们证明它的平均表现明显优于短期和长期预测的基线预报器,即使是由包含的数据集组成的数据集只有几百个培训样本。
translated by 谷歌翻译
本文介绍了一个集成预测方法,通过减少特征和模型选择假设来显示M4Competitiation数据集的强劲结果,称为甜甜圈(不利用人为假设)。我们的假设减少,主要由自动生成的功能和更多样化的集合模型组成,显着优于Montero-Manso等人的统计特征的集合方法FForma。 (2020)。此外,我们用长短期内存网络(LSTM)AutoEncoder调查特征提取,并发现此类特征包含传统统计特征方法未捕获的重要信息。合奏加权模型使用LSTM功能和统计功能准确地结合模型。特征重要性和交互的分析表明,单独的统计数据的LSTM特征略有优势。聚类分析表明,不同的基本LSTM功能与大多数统计特征不同。我们还发现,通过使用新模型增强合奏来增加加权模型的解决方案空间是加权模型学习使用的东西,解释了准确性的一部分。最后,我们为集合的最佳组合和选择提供了正式的前后事实分析,通过M4数据集的线性优化量化差异。我们还包括一个简短的证据,模型组合优于模型选择,后者。
translated by 谷歌翻译
Dengue fever is a virulent disease spreading over 100 tropical and subtropical countries in Africa, the Americas, and Asia. This arboviral disease affects around 400 million people globally, severely distressing the healthcare systems. The unavailability of a specific drug and ready-to-use vaccine makes the situation worse. Hence, policymakers must rely on early warning systems to control intervention-related decisions. Forecasts routinely provide critical information for dangerous epidemic events. However, the available forecasting models (e.g., weather-driven mechanistic, statistical time series, and machine learning models) lack a clear understanding of different components to improve prediction accuracy and often provide unstable and unreliable forecasts. This study proposes an ensemble wavelet neural network with exogenous factor(s) (XEWNet) model that can produce reliable estimates for dengue outbreak prediction for three geographical regions, namely San Juan, Iquitos, and Ahmedabad. The proposed XEWNet model is flexible and can easily incorporate exogenous climate variable(s) confirmed by statistical causality tests in its scalable framework. The proposed model is an integrated approach that uses wavelet transformation into an ensemble neural network framework that helps in generating more reliable long-term forecasts. The proposed XEWNet allows complex non-linear relationships between the dengue incidence cases and rainfall; however, mathematically interpretable, fast in execution, and easily comprehensible. The proposal's competitiveness is measured using computational experiments based on various statistical metrics and several statistical comparison tests. In comparison with statistical, machine learning, and deep learning methods, our proposed XEWNet performs better in 75% of the cases for short-term and long-term forecasting of dengue incidence.
translated by 谷歌翻译
隐式神经表示(INRS)最近已成为一种强大的工具,可提供准确和分辨率的数据编码。它们作为一般近似器的稳健性已在各种数据源中显示,并在图像,声音和3D场景表示方面进行了应用。但是,很少有人注意利用这些体系结构来代表和分析时间序列数据。在本文中,我们使用INRS分析了时间序列的表示,从重建精度和训练收敛速度进行比较不同的激活函数。我们展示了如何利用这些网络的时间序列的插补,并在单变量和多变量数据上进行了应用。最后,我们提出了一个超网络架构,该体系结构利用INR来学习整个时间序列数据集的压缩潜在表示。我们引入了基于FFT的损失来指导培训,以便在时间序列中保留所有频率。我们证明该网络可用于将时间序列编码为INR,并且可以将它们的嵌入方式内插以从现有时间序列中生成新的时间序列。我们通过将其用于数据增强来评估我们的生成方法,并表明它与当前的最新方法相对于时间序列的最新方法具有竞争力。
translated by 谷歌翻译
时间序列预测对于许多领域的决策是必不可少的。在这项工作中,我们解决了在多个可能互动的金融资产中预测价格进化的挑战。对此问题的解决方案对各国政府,银行和投资者来说具有明显的重要性。统计方法如自动回归综合移动平均(Arima)被广泛应用于这些问题。在本文中,我们建议通过视频预测以新颖的方式接近多种金融资产的经济时序预测。鉴于经过多次潜在的互动金融资产价格,我们的目标是预测未来的价格进化。我们在每次作为向量中处理每次的价格的快照,而是在2D中将这些价格空间布局作为图像,使得我们可以利用CNNS学习这些金融资产的潜在代表的力量。因此,这些价格的历史成为一系列图像,我们的目标成为预测未来的图像。我们建立在最先进的视频预测方法中,用于预测未来图像。我们的实验涉及在美国股市交易的九个金融资产价格演变的预测任务。所提出的方法优于基准的基线,包括ARIMA,先知和所提出的方法的变化,展示了利用CNNS在经济时序预测问题中利用CNN的力量的好处。
translated by 谷歌翻译
信息爆炸的时代促使累积巨大的时间序列数据,包括静止和非静止时间序列数据。最先进的算法在处理静止时间数据方面取得了体面的性能。然而,解决静止​​时间系列的传统算法不适用于外汇交易的非静止系列。本文调查了适用的模型,可以提高预测未来非静止时间序列序列趋势的准确性。特别是,我们专注于识别潜在模型,并调查识别模式从历史数据的影响。我们提出了基于RNN的\ Rebuttal {The} SEQ2Seq模型的组合,以及通过动态时间翘曲和Zigzag峰谷指示器提取的注重机制和富集的集合特征。定制损失函数和评估指标旨在更加关注预测序列的峰值和谷点。我们的研究结果表明,我们的模型可以在外汇数据集中预测高精度的4小时未来趋势,这在逼真的情况下至关重要,以协助外汇交易决策。我们进一步提供了对各种损失函数,评估指标,模型变体和组件对模型性能的影响的评估。
translated by 谷歌翻译
自回旋运动平均值(ARMA)模型是经典的,可以说是模型时间序列数据的最多研究的方法之一。它具有引人入胜的理论特性,并在从业者中广泛使用。最近的深度学习方法普及了经常性神经网络(RNN),尤其是长期记忆(LSTM)细胞,这些细胞已成为神经时间序列建模中最佳性能和最常见的构件之一。虽然对具有长期效果的时间序列数据或序列有利,但复杂的RNN细胞并不总是必须的,有时甚至可能不如更简单的复发方法。在这项工作中,我们介绍了ARMA细胞,这是一种在神经网络中的时间序列建模的更简单,模块化和有效的方法。该单元可以用于存在复发结构的任何神经网络体系结构中,并自然地使用矢量自动进程处理多元时间序列。我们还引入了Convarma细胞作为空间相关时间序列的自然继任者。我们的实验表明,所提出的方法在性能方面与流行替代方案具有竞争力,同时由于其简单性而变得更加强大和引人注目。
translated by 谷歌翻译
多元时间序列预测已在各种领域(包括金融,交通,能源和医疗保健)中广泛范围的应用程序。为了捕获复杂的时间模式,大量研究设计了基于RNN,GNN和Transformers的许多变体的复杂神经网络体系结构。但是,复杂的模型在计算上通常是昂贵的,因此当应用于大型现实世界数据集时,在训练和推理效率方面面临严重的挑战。在本文中,我们介绍了Lightts,这是一种基于简单的基于MLP的结构的轻度深度学习体系结构。 LightT的关键思想是在两种微妙的下采样策略之上应用基于MLP的结构,包括间隔抽样和连续采样,灵感来自至关重要的事实,即下采样时间序列通常保留其大多数信息。我们对八个广泛使用的基准数据集进行了广泛的实验。与现有的最新方法相比,Lightts在其中五个方面表现出更好的性能,其余的性能可比性。此外,Lightts高效。与最大的基准数据集上的先前SOTA方法相比,它使用的触发器少于5%。此外,Lightts的预测准确性与以前的SOTA方法相比,在长序列预测任务中,预测准确性的差异要小得多。
translated by 谷歌翻译
学习复杂的时间序列预测模型通常需要大量数据,因为每个任务/数据集都会从头开始训练每个模型。利用类似数据集利用学习经验是一种公认​​的技术,用于分类问题,称为几个射击分类。但是,现有方法不能应用于预测时间序列,因为i)多元时间序列数据集具有不同的渠道,ii)预测与分类主要不同。在本文中,我们首次使用异质通道对时间序列的几个预测进行正式的问题。扩展了有关矢量数据中异质属性的最新工作,我们开发了一个由置换不变的深set块组成的模型,该模型结合了时间嵌入。我们组装了40个多元时间序列数据集的第一个元数据集,并通过实验显示我们的模型提供了一个良好的概括,优于从更简单的场景中延续的基线,这些基线要么无法跨任务学习或错过时间信息。
translated by 谷歌翻译
预测时间序列数据代表了数据科学和知识发现研究的新兴领域,其广泛应用程序从股票价格和能源需求预测到早期预测流行病。在过去的五十年中,已经提出了许多统计和机器学习方法,对高质量和可靠预测的需求。但是,在现实生活中的预测问题中,存在基于上述范式之一的模型是可取的。因此,需要混合解决方案来弥合经典预测方法与现代神经网络模型之间的差距。在这种情况下,我们介绍了一个概率自回归神经网络(PARNN)模型,该模型可以处理各种复杂的时间序列数据(例如,非线性,非季节性,远程依赖性和非平稳性)。拟议的PARNN模型是通过建立综合运动平均值和自回归神经网络的融合来构建的,以保持个人的解释性,可伸缩性和``白色盒子样''的预测行为。通过考虑相关的马尔可夫链的渐近行为,获得了渐近平稳性和几何形状的足够条件。与先进的深度学习工具不同,基于预测间隔的PARNN模型的不确定性量化。在计算实验期间,Parnn在各种各样的现实世界数据集中,超过了标准统计,机器学习和深度学习模型(例如,变形金刚,Nbeats,Deepar等),来自宏观经济学,旅游,能源,流行病学和其他人的真实数据集集合 - 期,中期和长期预测。与最先进的预报相比,与最佳方法相比,与最佳方法进行了多重比较,以展示该提案的优越性。
translated by 谷歌翻译
在本文中,我们介绍了蒙面的多步多变量预测(MMMF),这是一个新颖而普遍的自我监督学习框架,用于时间序列预测,并提供已知的未来信息。在许多真实世界的预测情况下,已知一些未来的信息,例如,在进行短期到中期的电力需求预测或进行飞机出发预测时的油价预测时,天气信息。现有的机器学习预测框架可以分为(1)基于样本的方法,在此方法中进行每个预测,以及(2)时间序列回归方法,其中未来信息未完全合并。为了克服现有方法的局限性,我们提出了MMMF,这是一个培训能够生成一系列输出的神经网络模型的框架,将过去的时间信息和有关未来的已知信息结合在一起,以做出更好的预测。实验在两个现实世界数据集上进行(1)中期电力需求预测,以及(2)前两个月的飞行偏离预测。他们表明,所提出的MMMF框架的表现不仅优于基于样本的方法,而且具有与完全相同的基本模型的现有时间序列预测模型。此外,一旦通过MMMF进行了神经网络模型,其推理速度与接受传统回归配方训练的相同模型的推理速度相似,从而使MMMF成为现有回归训练的时间序列的更好替代品,如果有一些可用的未来,信息。
translated by 谷歌翻译
远程预测是许多决策支持系统的起点,需要在预测值上从高级聚合模式中汲取推断。最先进的时间序列预测方法要么受到Long-Horizo n预测的概念漂移,或者未能准确地预测连贯和准确的高水平聚集体。在这项工作中,我们提出了一种新颖的概率预测方法,其在基础级别和预测总统计方面产生了一致的预测。我们使用新推断方法实现预测基础级和聚合统计数据之间的一致性。我们的推断方法基于KL分歧,可以在封闭形式中有效地解决。我们表明,我们的方法在基本级别和静电汇总推断上的预测性能提高了三种不同域的真实数据集的帖子推断。
translated by 谷歌翻译
Forecasting time series with extreme events has been a challenging and prevalent research topic, especially when the time series data are affected by complicated uncertain factors, such as is the case in hydrologic prediction. Diverse traditional and deep learning models have been applied to discover the nonlinear relationships and recognize the complex patterns in these types of data. However, existing methods usually ignore the negative influence of imbalanced data, or severe events, on model training. Moreover, methods are usually evaluated on a small number of generally well-behaved time series, which does not show their ability to generalize. To tackle these issues, we propose a novel probability-enhanced neural network model, called NEC+, which concurrently learns extreme and normal prediction functions and a way to choose among them via selective back propagation. We evaluate the proposed model on the difficult 3-day ahead hourly water level prediction task applied to 9 reservoirs in California. Experimental results demonstrate that the proposed model significantly outperforms state-of-the-art baselines and exhibits superior generalization ability on data with diverse distributions.
translated by 谷歌翻译