由于医学成像社区缺乏质量注释,半监督学习方法在图像语义分割任务中受到高度重视。在本文中,提出了一种先进的一致性感知伪标签的自我同学方法,以充分利用视觉变压器(VIT)和卷积神经网络(CNN)的力量。我们提出的框架由一个功能学习模块组成,该模块由VIT和CNN相互增强,以及一个适合一致性意识的指导模块。伪标签是通过特征学习模块中的CNN和VIT的视图来重复和分别使用的,以扩展数据集,并且相互有益。同时,为特征学习模块设计了扰动方案,并利用平均网络权重来开发指导模块。通过这样做,该框架结合了CNN和VIT的特征学习强度,通过双视图共同训练增强性能,并以半监督的方式实现一致性的监督。对CNN和VIT的所有替代监督模式进行了拓扑探索,经过详细验证,证明了我们在半监督医学图像分割任务上的最有希望的性能和特定设置。实验结果表明,所提出的方法在带有各种指标的公共基准数据集上实现了最先进的性能。该代码公开可用。
translated by 谷歌翻译
深度学习模型,例如监督编码器样式网络,在医学图像细分中表现出令人鼓舞的性能,但具有高标签成本。我们提出了一个半监督语义分割框架Trisegnet。它在有限的标记数据和大量未标记的数据上使用Triple-View功能学习。 Triple-View架构由三个像素级分类器和一个低水平的共享体重学习模块组成。该模型首先用标记的数据初始化。标签处理,包括数据扰动,置信标签投票和注释的不自信标签检测,使该模型能够同时训练标签和未标记的数据。每个模型的信心通过功能学习的其他两个视图得到了提高。重复此过程,直到每个模型达到与对应物相同的置信度。此策略使得对通用医疗图像数据集的三次学习学习。定制重叠和基于边界的损失功能是根据培训的不同阶段量身定制的。分割结果将在四个公开可用的基准数据集上进行评估,包括超声,CT,MRI和组织学图像。重复的实验证明了拟议网络与其他半监督算法相比,在一系列评估措施中相比。
translated by 谷歌翻译
最近,利用卷积神经网络(CNNS)和变压器的深度学习表明,令人鼓舞的医学图像细分导致结果。但是,他们仍然具有挑战性,以实现有限的培训的良好表现。在这项工作中,我们通过在CNN和变压器之间引入交叉教学,为半监控医学图像分割提供了一个非常简单但有效的框架。具体而言,我们简化了从一致性正则化的经典深度共同训练交叉教学,其中网络的预测用作伪标签,直接端到端监督其他网络。考虑到CNN和变压器之间的学习范例的差异,我们在CNN和变压器之间引入了交叉教学,而不是使用CNNS。在公共基准测试中的实验表明,我们的方法优于八个现有的半监督学习方法,只需更简单的框架。值得注意的是,这项工作可能是第一次尝试将CNN和变压器组合以进行半监督的医学图像分割,并在公共基准上实现有前途的结果。该代码将发布:https://github.com/hilab-git/sl4mis。
translated by 谷歌翻译
计算机辅助医学图像分割已广泛应用于诊断和治疗,以获得靶器官和组织的形状和体积的临床有用信息。在过去的几年中,基于卷积神经网络(CNN)的方法(例如,U-Net)占主导地位,但仍遭受了不足的远程信息捕获。因此,最近的工作提出了用于医学图像分割任务的计算机视觉变压器变体,并获得了有希望的表现。这种变压器通过计算配对贴片关系来模拟远程依赖性。然而,它们促进了禁止的计算成本,尤其是在3D医学图像(例如,CT和MRI)上。在本文中,我们提出了一种称为扩张变压器的新方法,该方法在本地和全球范围内交替捕获的配对贴片关系进行自我关注。灵感来自扩张卷积核,我们以扩张的方式进行全球自我关注,扩大接收领域而不增加所涉及的斑块,从而降低计算成本。基于这种扩展变压器的设计,我们构造了一个用于3D医学图像分割的U形编码器解码器分层体系结构。 Synapse和ACDC数据集的实验表明,我们的D-Ager Model从头开始培训,以低计算成本从划痕训练,优于各种竞争力的CNN或基于变压器的分段模型,而不耗时的每训练过程。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
卷积神经网络(CNN)已成为医疗图像分割任务的共识。但是,由于卷积操作的性质,它们在建模长期依赖性和空间相关性时受到限制。尽管最初开发了变压器来解决这个问题,但它们未能捕获低级功能。相比之下,证明本地和全球特征对于密集的预测至关重要,例如在具有挑战性的环境中细分。在本文中,我们提出了一种新型方法,该方法有效地桥接了CNN和用于医学图像分割的变压器。具体而言,我们使用开创性SWIN变压器模块和一个基于CNN的编码器设计两个多尺度特征表示。为了确保从上述两个表示获得的全局和局部特征的精细融合,我们建议在编码器编码器结构的跳过连接中提出一个双层融合(DLF)模块。在各种医学图像分割数据集上进行的广泛实验证明了Hiformer在计算复杂性以及定量和定性结果方面对其他基于CNN的,基于变压器和混合方法的有效性。我们的代码可在以下网址公开获取:https://github.com/amirhossein-kz/hiformer
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像细分和其他方面。但是,现有的医学图像分割模型的性能受到获得足够数量的高质量数据的挑战的限制。为了克服限制,我们提出了一个新的视觉医学图像分割模型LVIT(语言符合视觉变压器)。在我们的模型中,引入了医学文本注释,以弥补图像数据的质量缺陷。此外,文本信息可以在一定程度上指导伪标签的产生,并进一步保证半监督学习中伪标签的质量。我们还提出了指数伪标签迭代机制(EPI),以帮助扩展LVIT和像素级注意模块(PLAM)的半监督版本,以保留图像的局部特征。在我们的模型中,LV(语言视觉)损失旨在直接使用文本信息监督未标记图像的培训。为了验证LVIT的性能,我们构建了包含病理图像,X射线等的多模式医学分割数据集(图像 +文本)。实验结果表明,我们提出的LVIT在完全和半监督条件下具有更好的分割性能。代码和数据集可在https://github.com/huanglizi/lvit上找到。
translated by 谷歌翻译
腹部器官分割具有许多重要的临床应用,例如器官定量,手术计划和疾病诊断。但是,从CT扫描中手动注释器官是耗时且劳动密集型的。半监督的学习表明,通过从大量未标记的图像和有限的标签样本中学习来减轻这一挑战的潜力。在这项工作中,我们遵循自我训练策略,并使用CNN和Transformer使用混合体系结构(PHTRAN),以生成精确的伪标签。之后,我们将标签数据一起介绍给具有轻量级PHTRAN的两阶段分割框架,以提高模型的性能和概括能力,同时保持效率。 Flare2022验证集的实验表明,我们的方法可实现出色的分割性能以及快速和低资源模型的推断。平均DSC和HSD分别为0.8956和0.9316。在我们的开发环境下,平均推理时间为18.62 s,平均最大GPU存储器为1995.04 MB,GPU内存时间曲线下的面积和CPU利用时间曲线下的平均面积为23196.84和319.67。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN),尤其是U-NET,一直是医学图像处理时代的流行技术。具体而言,开创性的U-NET及其替代方案成功地设法解决了各种各样的医学图像分割任务。但是,这些体系结构在本质上是不完美的,因为它们无法表现出长距离相互作用和空间依赖性,从而导致具有可变形状和结构的医学图像分割的严重性能下降。针对序列到序列预测的初步提议的变压器已成为替代体系结构,以精确地模拟由自我激进机制辅助的全局信息。尽管设计了可行的设计,但利用纯变压器来进行图像分割目的,可能导致限制的定位容量,导致低级功能不足。因此,一系列研究旨在设计基于变压器的U-NET的强大变体。在本文中,我们提出了Trans-Norm,这是一种新型的深层分割框架,它随同将变压器模块合并为标准U-NET的编码器和跳过连接。我们认为,跳过连接的方便设计对于准确的分割至关重要,因为它可以帮助扩展路径和收缩路径之间的功能融合。在这方面,我们从变压器模块中得出了一种空间归一化机制,以适应性地重新校准跳过连接路径。对医学图像分割的三个典型任务进行了广泛的实验,证明了透气的有效性。代码和训练有素的模型可在https://github.com/rezazad68/transnorm上公开获得。
translated by 谷歌翻译
半监督学习在医疗领域取得了重大进展,因为它减轻了收集丰富的像素的沉重负担,用于针对语义分割任务。现有的半监督方法增强了利用从有限标记数据获得的现有知识从未标记数据提取功能的能力。然而,由于标记数据的稀缺性,模型提取的特征在监督学习中受到限制,并且对未标记数据的预测质量也无法保证。两者都将妨碍一致培训。为此,我们提出了一种新颖的不确定性感知计划,以使模型自动学习地区。具体而言,我们采用Monte Carlo采样作为获得不确定性地图的估计方法,该方法可以作为损失损失的重量,以强制根据监督学习和无监督学习的特征将模型专注于有价值的区域。同时,在后退过程中,我们通过增强不同任务之间的梯度流动,联合无监督和监督损失来加速网络的融合。定量地,我们对三个挑战的医疗数据集进行了广泛的实验。实验结果表明,最先进的对应物的理想改善。
translated by 谷歌翻译
语义分割是开发医学图像诊断系统的重要任务。但是,构建注释的医疗数据集很昂贵。因此,在这种情况下,半监督方法很重要。在半监督学习中,标签的质量在模型性能中起着至关重要的作用。在这项工作中,我们提出了一种新的伪标签策略,可提高用于培训学生网络的伪标签的质量。我们遵循多阶段的半监督训练方法,该方法在标记的数据集上训练教师模型,然后使用训练有素的老师将伪标签渲染用于学生培训。通过这样做,伪标签将被更新,并且随着培训的进度更加精确。上一个和我们的方法之间的关键区别在于,我们在学生培训过程中更新教师模型。因此,在学生培训过程中,提高了伪标签的质量。我们还提出了一种简单但有效的策略,以使用动量模型来提高伪标签的质量 - 训练过程中原始模型的慢复制版本。通过应用动量模型与学生培训期间的重新渲染伪标签相结合,我们在五个数据集中平均达到了84.1%的骰子分数(即Kvarsir,CVC-ClinicdB,Etis-laribpolypdb,cvc-colondb,cvc-colondb,cvc-colondb和cvc-300)和CVC-300)只有20%的数据集用作标记数据。我们的结果超过了3%的共同实践,甚至在某些数据集中取得了完全监督的结果。我们的源代码和预培训模型可在https://github.com/sun-asterisk-research/online学习SSL上找到
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
对医学图像的器官或病变的准确分割对于可靠的疾病和器官形态计量学的可靠诊断至关重要。近年来,卷积编码器解码器解决方案在自动医疗图像分割领域取得了重大进展。由于卷积操作中的固有偏见,先前的模型主要集中在相邻像素形成的局部视觉提示上,但无法完全对远程上下文依赖性进行建模。在本文中,我们提出了一个新型的基于变压器的注意力指导网络,称为Transattunet,其中多层引导注意力和多尺度跳过连接旨在共同增强语义分割体系结构的性能。受到变压器的启发,具有变压器自我注意力(TSA)和全球空间注意力(GSA)的自我意识注意(SAA)被纳入Transattunet中,以有效地学习编码器特征之间的非本地相互作用。此外,我们还使用解码器块之间的其他多尺度跳过连接来汇总具有不同语义尺度的上采样功能。这样,多尺度上下文信息的表示能力就可以增强以产生判别特征。从这些互补组件中受益,拟议的Transattunet可以有效地减轻卷积层堆叠和连续采样操作引起的细节损失,最终提高医学图像的细分质量。来自不同成像方式的多个医疗图像分割数据集进行了广泛的实验表明,所提出的方法始终优于最先进的基线。我们的代码和预培训模型可在以下网址找到:https://github.com/yishuliu/transattunet。
translated by 谷歌翻译
变压器在计算机视觉中的成功吸引了医学成像社区越来越多的关注。特别是对于医学图像细分,已经介绍了许多基于卷积神经网络(CNN)和变压器的出色混合体系结构,并取得了令人印象深刻的性能。但是,将模块化变压器嵌入CNN中的大多数方法都难以发挥其全部潜力。在本文中,我们提出了一种新型的医学图像分割的混合体系结构,称为Phtrans,该架构可与主要构建基块中的变形金刚和CNN杂交,以产生来自全球和本地特征的层次结构表示,并适应性地汇总它们,旨在完全利用其优势以获得更好的优势。细分性能。具体而言,phtrans遵循U形编码器编码器设计,并在深层阶段引入平行的Hybird模块,其中卷积块和经过修改的3D SWIN变压器分别学习本地特征和全局依赖性,然后统一尺寸,统一尺寸输出以实现特征聚合。超出颅库和自动化心脏诊断挑战数据集以外的多ATLA标签的广泛实验结果证实了其有效性,始终超过了最先进的方法。该代码可在以下网址获得:https://github.com/lseventeen/phtrans。
translated by 谷歌翻译
最新的语义分段方法采用具有编码器解码器架构的U-Net框架。 U-Net仍然具有挑战性,具有简单的跳过连接方案来模拟全局多尺度上下文:1)由于编码器和解码器级的不兼容功能集的问题,并非每个跳过连接设置都是有效的,甚至一些跳过连接对分割性能产生负面影响; 2)原始U-Net比某些数据集上没有任何跳过连接的U-Net更糟糕。根据我们的调查结果,我们提出了一个名为Uctransnet的新分段框架(在U-Net中的提议CTRANS模块),从引导机制的频道视角。具体地,CTRANS模块是U-NET SKIP连接的替代,其包括与变压器(命名CCT)和子模块通道 - 明智的跨关注进行多尺度信道交叉融合的子模块(命名为CCA)以指导熔融的多尺度通道 - 明智信息,以有效地连接到解码器功能以消除歧义。因此,由CCT和CCA组成的所提出的连接能够替换原始跳过连接以解决精确的自动医学图像分割的语义间隙。实验结果表明,我们的UCTRANSNET产生更精确的分割性能,并通过涉及变压器或U形框架的不同数据集和传统架构的语义分割来实现一致的改进。代码:https://github.com/mcgregorwwwww/uctransnet。
translated by 谷歌翻译
基于CNN的方法已经实现了医学图像分割的令人印象深刻的结果,但由于卷积操作的内在局部,它们未能捕获远程依赖性。基于变压器的方法最近在愿景任务中流行,因为它们的远程依赖性和有希望的性能。但是,它缺乏建模本地背景。本文以医学图像分割为例,我们呈现了MissFormer,一种有效和强大的医学图像分割变压器。 MissFormer是具有两个吸引人设计的分层编码器 - 解码器网络:1)通过所提出的增强型变压器块重新设计前馈网络,该熵增强了远程依赖性并补充本地上下文,使得该特征更加辨别。 2)我们提出了增强的变压器上下文网桥,与以前的模拟全局信息的方法不同,所提出的上下文网桥与增强变压器块提取了由我们的层级变压器编码器产生的多尺度特征的远程依赖性和本地语境。由这两个设计驱动,MissFormer显示了捕获更多辨别性依赖性和在医学图像分割中的识别依赖性和上下文的牢固能力。多器官和心脏分割任务的实验表明了我们的错过更优越性,有效性和稳健性,训练了从划伤的痕迹甚至高于想象的最先进方法。核心设计可以推广到其他视觉分段任务。代码已在GitHub上发布:https://github.com/zhifangdeng/missformer
translated by 谷歌翻译
We propose a novel teacher-student model for semi-supervised multi-organ segmentation. In teacher-student model, data augmentation is usually adopted on unlabeled data to regularize the consistent training between teacher and student. We start from a key perspective that fixed relative locations and variable sizes of different organs can provide distribution information where a multi-organ CT scan is drawn. Thus, we treat the prior anatomy as a strong tool to guide the data augmentation and reduce the mismatch between labeled and unlabeled images for semi-supervised learning. More specifically, we propose a data augmentation strategy based on partition-and-recovery N$^3$ cubes cross- and within- labeled and unlabeled images. Our strategy encourages unlabeled images to learn organ semantics in relative locations from the labeled images (cross-branch) and enhances the learning ability for small organs (within-branch). For within-branch, we further propose to refine the quality of pseudo labels by blending the learned representations from small cubes to incorporate local attributes. Our method is termed as MagicNet, since it treats the CT volume as a magic-cube and $N^3$-cube partition-and-recovery process matches with the rule of playing a magic-cube. Extensive experiments on two public CT multi-organ datasets demonstrate the effectiveness of MagicNet, and noticeably outperforms state-of-the-art semi-supervised medical image segmentation approaches, with +7% DSC improvement on MACT dataset with 10% labeled images.
translated by 谷歌翻译
自我训练在半监督学习中表现出巨大的潜力。它的核心思想是使用在标记数据上学习的模型来生成未标记样本的伪标签,然后自我教学。为了获得有效的监督,主动尝试通常会采用动量老师进行伪标签的预测,但要观察确认偏见问题,在这种情况下,错误的预测可能会提供错误的监督信号并在培训过程中积累。这种缺点的主要原因是,现行的自我训练框架充当以前的知识指导当前状态,因为老师仅与过去的学生更新。为了减轻这个问题,我们提出了一种新颖的自我训练策略,该策略使模型可以从未来学习。具体而言,在每个培训步骤中,我们都会首先优化学生(即,在不将其应用于模型权重的情况下缓存梯度),然后用虚拟未来的学生更新老师,最后要求老师为伪标记生产伪标签目前的学生作为指导。这样,我们设法提高了伪标签的质量,从而提高了性能。我们还通过深入(FST-D)和广泛(FST-W)窥视未来,开发了我们未来自我训练(FST)框架的两个变体。将无监督的域自适应语义分割和半监督语义分割的任务作为实例,我们在广泛的环境下实验表明了我们方法的有效性和优越性。代码将公开可用。
translated by 谷歌翻译
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19. However, there are still some challenges for developing AI system. 1) Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint. 2) Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume. 3) The emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multi-scale information along different dimension of input feature maps and impose supervision on multiple predictions from different CNN layers. Second, we assign this MDA-CNN as a basic network into a novel dual multi-scale mean teacher network (DM${^2}$T-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multi-scale information. Our DM${^2}$T-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multi-scale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.
translated by 谷歌翻译
Recently, many attempts have been made to construct a transformer base U-shaped architecture, and new methods have been proposed that outperformed CNN-based rivals. However, serious problems such as blockiness and cropped edges in predicted masks remain because of transformers' patch partitioning operations. In this work, we propose a new U-shaped architecture for medical image segmentation with the help of the newly introduced focal modulation mechanism. The proposed architecture has asymmetric depths for the encoder and decoder. Due to the ability of the focal module to aggregate local and global features, our model could simultaneously benefit the wide receptive field of transformers and local viewing of CNNs. This helps the proposed method balance the local and global feature usage to outperform one of the most powerful transformer-based U-shaped models called Swin-UNet. We achieved a 1.68% higher DICE score and a 0.89 better HD metric on the Synapse dataset. Also, with extremely limited data, we had a 4.25% higher DICE score on the NeoPolyp dataset. Our implementations are available at: https://github.com/givkashi/Focal-UNet
translated by 谷歌翻译