使用移动操纵器来整理家庭环境,在机器人技术中提出了各种挑战,例如适应大型现实世界的环境变化,以及在人类面前的安全和强大的部署。2021年9月举行的全球竞赛,对真正的家庭环境中的整理任务进行了基准测试,重要的是,对全面的系统性能进行了测试。对于此挑战,我们开发了整个家庭服务机器人系统,该机器人系统利用数据驱动的方法来适应众多的方法在执行过程中发生的边缘案例,而不是经典的手动预编程解决方案。在本文中,我们描述了提出的机器人系统的核心成分,包括视觉识别,对象操纵和运动计划。我们的机器人系统赢得了二等奖,验证了数据驱动的机器人系统在家庭环境中移动操作的有效性和潜力。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
近年来,空中机器人背景下的高速导航和环境互动已成为几个学术和工业研究研究的兴趣领域。特别是,由于其若干环境中的潜在可用性,因此搜索和拦截(SAI)应用程序造成引人注目的研究区域。尽管如此,SAI任务涉及有关感官权重,板载计算资源,致动设计和感知和控制算法的具有挑战性的发展。在这项工作中,已经提出了一种用于高速对象抓握的全自动空中机器人。作为一个额外的子任务,我们的系统能够自主地刺穿位于靠近表面的杆中的气球。我们的第一款贡献是在致动和感觉水平的致动和感觉水平的空中机器人的设计,包括具有额外传感器的新型夹具设计,使机器人能够高速抓住物体。第二种贡献是一种完整的软件框架,包括感知,状态估计,运动计划,运动控制和任务控制,以便快速且强大地执行自主掌握任务。我们的方法已在一个具有挑战性的国际竞争中验证,并显示出突出的结果,能够在室外环境中以6米/分来自动搜索,遵循和掌握移动物体
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
如今,机器人在我们的日常生活中起着越来越重要的作用。在以人为本的环境中,机器人经常会遇到成堆的对象,包装的项目或孤立的对象。因此,机器人必须能够在各种情况下掌握和操纵不同的物体,以帮助人类进行日常任务。在本文中,我们提出了一种多视图深度学习方法,以处理以人为中心的域中抓住强大的对象。特别是,我们的方法将任意对象的点云作为输入,然后生成给定对象的拼字图。获得的视图最终用于估计每个对象的像素抓握合成。我们使用小对象抓住数据集训练模型端到端,并在模拟和现实世界数据上对其进行测试,而无需进行任何进一步的微调。为了评估所提出方法的性能,我们在三种情况下进行了广泛的实验集,包括孤立的对象,包装的项目和一堆对象。实验结果表明,我们的方法在所有仿真和现实机器人方案中都表现出色,并且能够在各种场景配置中实现新颖对象的可靠闭环抓握。
translated by 谷歌翻译
实时机器人掌握,支持随后的精确反对操作任务,是高级高级自治系统的优先目标。然而,尚未找到这样一种可以用时间效率进行充分准确的掌握的算法。本文提出了一种新的方法,其具有2阶段方法,它使用深神经网络结合快速的2D对象识别,以及基于点对特征框架的随后的精确和快速的6D姿态估计来形成实时3D对象识别和抓握解决方案能够多对象类场景。所提出的解决方案有可能在实时应用上稳健地进行,需要效率和准确性。为了验证我们的方法,我们进行了广泛且彻底的实验,涉及我们自己的数据集的费力准备。实验结果表明,该方法在5CM5DEG度量标准中的精度97.37%,平均距离度量分数99.37%。实验结果显示了通过使用该方法的总体62%的相对改善(5cm5deg度量)和52.48%(平均距离度量)。此外,姿势估计执行也显示出运行时间的平均改善47.6%。最后,为了说明系统在实时操作中的整体效率,进行了一个拾取和放置的机器人实验,并显示了90%的准确度的令人信服的成功率。此实验视频可在https://sites.google.com/view/dl-ppf6dpose/上获得。
translated by 谷歌翻译
We present a retrospective on the state of Embodied AI research. Our analysis focuses on 13 challenges presented at the Embodied AI Workshop at CVPR. These challenges are grouped into three themes: (1) visual navigation, (2) rearrangement, and (3) embodied vision-and-language. We discuss the dominant datasets within each theme, evaluation metrics for the challenges, and the performance of state-of-the-art models. We highlight commonalities between top approaches to the challenges and identify potential future directions for Embodied AI research.
translated by 谷歌翻译
为了使机器人系统在高风险,现实世界中取得成功,必须快速部署和强大的环境变化,表现不佳的硬件以及任务子任务失败。这些机器人通常被设计为考虑一系列任务事件,复杂的算法在某些关键的约束下降低了单个子任务失败率。我们的方法在视觉和控制中利用了共同的技术,并通过结果监测和恢复策略将鲁棒性编码为任务结构。此外,我们的系统基础架构可以快速部署,并且不需要中央通信。该报告还包括快速现场机器人开发和测试的课程。我们通过现实机器人实验在美国宾夕法尼亚州匹兹堡的户外测试地点以及2020年的穆罕默德·本·扎耶德国际机器人挑战赛开发和评估了我们的系统。所有竞争试验均在没有RTK-GP的情况下以完全自主模式完成。我们的系统在挑战2中排名第四,在大挑战赛中排名第七,诸如弹出五个气球(挑战1)之类的显着成就,成功地挑选和放置了一个障碍(挑战2),并将最多的水分配到户外,带有真正的户外火,并与自治无人机(挑战3)。
translated by 谷歌翻译
As the basis for prehensile manipulation, it is vital to enable robots to grasp as robustly as humans. In daily manipulation, our grasping system is prompt, accurate, flexible and continuous across spatial and temporal domains. Few existing methods cover all these properties for robot grasping. In this paper, we propose a new methodology for grasp perception to enable robots these abilities. Specifically, we develop a dense supervision strategy with real perception and analytic labels in the spatial-temporal domain. Additional awareness of objects' center-of-mass is incorporated into the learning process to help improve grasping stability. Utilization of grasp correspondence across observations enables dynamic grasp tracking. Our model, AnyGrasp, can generate accurate, full-DoF, dense and temporally-smooth grasp poses efficiently, and works robustly against large depth sensing noise. Embedded with AnyGrasp, we achieve a 93.3% success rate when clearing bins with over 300 unseen objects, which is comparable with human subjects under controlled conditions. Over 900 MPPH is reported on a single-arm system. For dynamic grasping, we demonstrate catching swimming robot fish in the water.
translated by 谷歌翻译
我们介绍了栖息地2.0(H2.0),这是一个模拟平台,用于培训交互式3D环境和复杂物理的场景中的虚拟机器人。我们为体现的AI堆栈 - 数据,仿真和基准任务做出了全面的贡献。具体来说,我们提出:(i)复制:一个由艺术家的,带注释的,可重新配置的3D公寓(匹配真实空间)与铰接对象(例如可以打开/关闭的橱柜和抽屉); (ii)H2.0:一个高性能物理学的3D模拟器,其速度超过8-GPU节点上的每秒25,000个模拟步骤(实时850x实时),代表先前工作的100倍加速;和(iii)家庭助理基准(HAB):一套辅助机器人(整理房屋,准备杂货,设置餐桌)的一套常见任务,以测试一系列移动操作功能。这些大规模的工程贡献使我们能够系统地比较长期结构化任务中的大规模加固学习(RL)和经典的感官平面操作(SPA)管道,并重点是对新对象,容器和布局的概括。 。我们发现(1)与层次结构相比,(1)平面RL政策在HAB上挣扎; (2)具有独立技能的层次结构遭受“交接问题”的困扰,(3)水疗管道比RL政策更脆。
translated by 谷歌翻译
通过智能连接设备,技术正在逐步重塑国内环境,提高家庭安全和整体环境质量。然而,人口转移和流行病最近展示导致他们房屋中的老年人隔离,产生了可靠的辅助人物的需求。机器人助理是国内福利创新的新前沿。老年人监测只是一个可能的服务应用之一,智能机器人平台可以处理集体福祉。在本文中,我们展示了一个新的辅助机器人,我们通过模块化的基于层的架构开发,使灵活的机械设计与最先进的人工智能进行了灵活的人工智能,以便感知和声音控制。关于以前的机器人助手的作品,我们提出了一个设置有四个麦粉轮的全向平台,这使得自主导航与杂乱环境中的有效障碍物避免。此外,我们设计可控定位装置,以扩展传感器的视觉范围,并改善对用户界面的访问以进行远程呈现和连接。轻量级深度学习解决方案,用于视觉感知,人员姿势分类和声乐命令完全运行机器人的嵌入式硬件,避免了云服务私有数据收集产生的隐私问题。
translated by 谷歌翻译
形状通知如何将对象掌握,无论是如何以及如何。因此,本文介绍了一种基于分割的架构,用于将用深度摄像机进行分解为多个基本形状的对象,以及用于机器人抓握的后处理管道。分段采用深度网络,称为PS-CNN,在具有6个类的原始形状和使用模拟引擎生成的合成数据上培训。每个原始形状都设计有参数化掌握家族,允许管道识别每个形状区域的多个掌握候选者。掌握是排序的排名,选择用于执行的第一个可行的。对于无任务掌握单个对象,该方法达到94.2%的成功率将其放置在顶部执行掌握方法中,与自上而下和SE(3)基础相比。涉及变量观点和杂波的其他测试展示了设置的鲁棒性。对于面向任务的掌握,PS-CNN实现了93.0%的成功率。总体而言,结果支持该假设,即在抓地管道内明确地编码形状原语应该提高掌握性能,包括无任务和任务相关的掌握预测。
translated by 谷歌翻译
本文对地面农业机器人系统和应用进行了全面综述,并特别关注收获,涵盖研究,商业产品和结果及其能力技术。大多数文献涉及作物检测的发展,通过视觉及其相关挑战的现场导航。健康监测,产量估计,水状态检查,种子种植和清除杂草经常遇到任务。关于机器人收割,苹果,草莓,西红柿和甜辣椒,主要是出版物,研究项目和商业产品中考虑的农作物。据报道的收获农业解决方案,通常由移动平台,单个机器人手臂/操纵器和各种导航/视觉系统组成。本文回顾了报告的特定功能和硬件的发展,通常是运营农业机器人收割机所要求的;它们包括(a)视觉系统,(b)运动计划/导航方法(对于机器人平台和/或ARM),(c)具有3D可视化的人类机器人交流(HRI)策略,(d)系统操作计划&掌握策略和(e)机器人最终效果/抓手设计。显然,自动化农业,特别是通过机器人系统的自主收获是一个研究领域,它仍然敞开着,在可以做出新的贡献的地方提供了一些挑战。
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
为了促进机器人技术和AI的最新进展,以进行人类和机器之间的微妙合作,我们提出了Kinova Gemini,这是一种原始的机器人系统,它整合了对话式AI对话和视觉推理,以使Kinova gen3 Lite机器人帮助人们撤回基于观念的对象或完全基于感知的对象选择任务。当一个人走到Kinova Gen3 Lite时,我们的Kinova Gemini能够在三种不同的应用程序中满足用户的要求:(1)它可以与人们进行自然对话,以互动并协助人类检索物体并将其交给用户,并将其交给用户。逐个。 (2)它通过Yolo V3检测到不同的对象,并识别物品的颜色属性,以询问人们是否想通过对话来掌握它,或者使用户可以选择需要哪个特定的特定特定的对象。 (3)它应用了Yolo V3来识别多个对象,并让您选择两个基于感知的挑选和位置任务,例如“将香蕉放入碗中”,并具有视觉推理和对话性交互。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
自治机器人目前是最受欢迎的人工智能问题之一,在过去十年中,从自动驾驶汽车和人形系统到交付机器人和无人机,这是一项最受欢迎的智能问题。部分问题是获得一个机器人,以模仿人类的感知,我们的视觉感,用诸如神经网络等数学模型用相机和大脑的眼睛替换眼睛。开发一个能够在没有人为干预的情况下驾驶汽车的AI和一个小型机器人在城市中递送包裹可能看起来像不同的问题,因此来自感知和视觉的观点来看,这两个问题都有几种相似之处。我们目前的主要解决方案通过使用计算机视觉技术,机器学习和各种算法来实现对环境感知的关注,使机器人理解环境或场景,移动,调整其轨迹并执行其任务(维护,探索,等。)无需人为干预。在这项工作中,我们从头开始开发一个小型自动车辆,能够仅使用视觉信息理解场景,通过工业环境导航,检测人员和障碍,或执行简单的维护任务。我们审查了基本问题的最先进问题,并证明了小规模采用的许多方法类似于来自特斯拉或Lyft等公司的真正自动驾驶汽车中使用的方法。最后,我们讨论了当前的机器人和自主驾驶状态以及我们在这一领域找到的技术和道德限制。
translated by 谷歌翻译