哪种卷积神经网络(CNN)结构表现良好的问题令人着迷。在这项工作中,我们通过连接零稳定性和模型性能,再通过一步向答案转向答案。具体而言,我们发现,如果普通微分方程的离散求解器为零稳定,则与该求解器相对应的CNN表现良好。我们首先在深度学习的背景下对零稳定性进行解释,然后在不同的零稳定情况下研究现有的一阶和二阶CNN的性能。基于初步观察,我们为构建CNN提供了高阶离散化,然后提出了一个零稳定的网络(ZeroSNET)。为了确保零稳定性的零稳定性,我们首先推断出满足一致性条件的结构,然后给出无训练参数的零稳定区域。通过分析特征方程的根,我们从理论上获得特征图的最佳系数。从经验上讲,我们从三个方面介绍了结果:我们提供了不同数据集上不同深度的广泛经验证据,以表明特征方程式的根源是需要历史特征的CNN表现的关键;我们的实验表明,零值优于基于高级离散化的现有CNN。零件在输入上显示出更好的鲁棒性。源代码可在\ url {https://github.com/longjin-lab/zerosnet}中获得。
translated by 谷歌翻译
神经常规差分方程(ODES)最近在各种研究域中引起了不断的关注。有一些作品研究了神经杂物的优化问题和近似能力,但他们的鲁棒性尚不清楚。在这项工作中,我们通过探索神经杂物经验和理论上的神经杂物的鲁棒性质来填补这一重要差异。我们首先通过将它们暴露于具有各种类型的扰动并随后研究相应输出的变化来提出基于神经竞争的网络(odeNets)的鲁棒性的实证研究。与传统的卷积神经网络(CNNS)相反,我们发现odeenets对随机高斯扰动和对抗性攻击示例的更稳健。然后,我们通过利用连续时间颂的流动的某种理想性能来提供对这种现象的富有识别理解,即积分曲线是非交叉的。我们的工作表明,由于其内在的稳健性,它很有希望使用神经杂散作为构建强大的深网络模型的基本块。为了进一步增强香草神经杂物杂物的鲁棒性,我们提出了时间不变的稳定神经颂(Tisode),其通过时间不变性和施加稳态约束来规则地规则地规则地对扰动数据的流程。我们表明,Tisode方法优于香草神经杂物,也可以与其他最先进的架构方法一起制造更强大的深网络。 \ url {https://github.com/hanshuyan/tisode}
translated by 谷歌翻译
由明确的反对派制作的对抗例子在机器学习中引起了重要的关注。然而,潜在虚假朋友带来的安全风险基本上被忽视了。在本文中,我们揭示了虚伪的例子的威胁 - 最初被错误分类但是虚假朋友扰乱的投入,以强迫正确的预测。虽然这种扰动的例子似乎是无害的,但我们首次指出,它们可能是恶意地用来隐瞒评估期间不合格(即,不如所需)模型的错误。一旦部署者信任虚伪的性能并在真实应用程序中应用“良好的”模型,即使在良性环境中也可能发生意外的失败。更严重的是,这种安全风险似乎是普遍存在的:我们发现许多类型的不合标准模型易受多个数据集的虚伪示例。此外,我们提供了第一次尝试,以称为虚伪风险的公制表征威胁,并试图通过一些对策来规避它。结果表明对策的有效性,即使在自适应稳健的培训之后,风险仍然是不可忽视的。
translated by 谷歌翻译
可以使用求解动态系统的数值方法来构建卷积神经网络,因为网络的正向通行证可以视为动力学系统的轨迹。但是,基于数值求解器的现有模型无法避免隐式方法的迭代,这使得模型在推理时效率低下。在本文中,我们从动态系统视图中重新解释了预激活残差网络(RESNET)及其变体。我们认为,隐式runge-kutta方法的迭代融合到了这些模型的训练中。此外,我们提出了一种基于高阶runge-kutta方法来构建网络模型的新方法,以实现更高的效率。我们提出的模型称为Runge-Kutta卷积神经网络(RKCNNS)。在多个基准数据集上评估了RKCNN。实验结果表明,RKCNN优于其他动态系统网络模型:它们具有更高的精度,资源较少。他们还基于动态系统的数值方法扩展了网络模型家族。
translated by 谷歌翻译
本文介绍了独立的神经颂歌(Snode),这是一种连续深入的神经模型,能够描述完整的深神经网络。这使用了一种新型的非线性结合梯度(NCG)下降优化方案,用于训练,在该方案中可以合并Sobolev梯度以提高模型权重的平滑度。我们还提出了神经敏感性问题的一般表述,并显示了它在NCG训练中的使用方式。灵敏度分析提供了整个网络中不确定性传播的可靠度量,可用于研究模型鲁棒性并产生对抗性攻击。我们的评估表明,与Resnet模型相比,我们的新型配方会提高鲁棒性和性能,并且为设计和开发机器学习的新机会提供了改善的解释性。
translated by 谷歌翻译
在本文中,我们提出了解决稳定性和卷积神经网络(CNN)的稳定性和视野的问题的神经网络。作为提高网络深度或宽度以提高性能的替代方案,我们提出了与全球加权拉普拉斯,分数拉普拉斯和逆分数拉普拉斯算子有关的基于积分的空间非识别算子,其在物理科学中的几个问题中出现。这种网络的前向传播由部分积分微分方程(PIDE)启发。我们在自动驾驶中测试基准图像分类数据集和语义分段任务的提出神经架构的有效性。此外,我们调查了这些密集的运营商的额外计算成本以及提出神经网络的前向传播的稳定性。
translated by 谷歌翻译
神经普通微分方程(神经ODE)是残留神经网络(RESNETS)的连续类似物。我们研究了重新NET定义的离散动力学是否接近连续的神经颂歌。我们首先量化了Resnet的隐藏状态轨迹与其相应神经ODE的解之间的距离。我们的界限很紧,在负面的一侧,如果残留函数的深度不光滑,则不会以深度为0。在正面,我们表明这种平滑度是通过梯度下降来保留的,该梯度下降具有线性残留功能和足够小的初始损失的重新系统。它确保在n上以1的速率1均匀地沿速率1的速率和优化时间对极限神经的隐式正则化。作为我们分析的副产品,我们考虑使用不含内存的离散伴随方法来训练重新NET,通过通过网络的向后传动恢复激活,并证明该方法理论上在大深度上取得了成功,如果残留功能是带有输入的Lipschitz。然后,我们证明HEUN的方法是一种二阶Ode集成方案,当残留函数及其深度平滑时,使用伴随方法进行更好的梯度估计。我们通过实验验证我们的伴随方法在很大程度上取得了成功,并且Heun方法需要更少的层才能成功。我们最终成功地使用了伴随方法来微调非常深的重新连接,而无需残留层的内存消耗。
translated by 谷歌翻译
深度神经网络通常以随机重量初始化,并具有足够选择的初始方差,以确保训练期间稳定的信号传播。但是,选择适当的方差变得具有挑战性,尤其是随着层数的增长。在这项工作中,我们用完全确定性的初始化方案(即零)代替随机权重初始化,该方案基于身份和Hadamard变换来初始用零和一个(最高范围化因子)开始网络的权重。通过理论和实证研究,我们证明了零能够训练网络而不会损害其表现力。在Resnet上应用零在包括Imagenet在内的各种数据集上实现最先进的性能,这表明随机权重可能不需要网络初始化。此外,零具有许多好处,例如训练超深网络(没有批处理规范化),表现出低级别的学习轨迹,从而导致低级和稀疏的解决方案,并提高培训可重复性。
translated by 谷歌翻译
We show that standard ResNet architectures can be made invertible, allowing the same model to be used for classification, density estimation, and generation. Typically, enforcing invertibility requires partitioning dimensions or restricting network architectures. In contrast, our approach only requires adding a simple normalization step during training, already available in standard frameworks. Invertible ResNets define a generative model which can be trained by maximum likelihood on unlabeled data. To compute likelihoods, we introduce a tractable approximation to the Jacobian log-determinant of a residual block. Our empirical evaluation shows that invertible ResNets perform competitively with both stateof-the-art image classifiers and flow-based generative models, something that has not been previously achieved with a single architecture.
translated by 谷歌翻译
差异隐私(DP)提供了正式的隐私保证,以防止对手可以访问机器学习模型,从而从提取有关单个培训点的信息。最受欢迎的DP训练方法是差异私有随机梯度下降(DP-SGD),它通过在训练过程中注入噪声来实现这种保护。然而,以前的工作发现,DP-SGD通常会导致标准图像分类基准的性能显着降解。此外,一些作者假设DP-SGD在大型模型上固有地表现不佳,因为保留隐私所需的噪声规范与模型维度成正比。相反,我们证明了过度参数化模型上的DP-SGD可以比以前想象的要好得多。将仔细的超参数调整与简单技术结合起来,以确保信号传播并提高收敛速率,我们获得了新的SOTA,而没有额外数据的CIFAR-10,在81.4%的81.4%下(8,10^{ - 5}) - 使用40 -layer wide-Resnet,比以前的SOTA提高了71.7%。当对预训练的NFNET-F3进行微调时,我们在ImageNet(0.5,8*10^{ - 7})下达到了83.8%的TOP-1精度。此外,我们还在(8,8 \ cdot 10^{ - 7})下达到了86.7%的TOP-1精度,DP仅比当前的非私人SOTA仅4.3%。我们认为,我们的结果是缩小私人图像分类和非私有图像分类之间准确性差距的重要一步。
translated by 谷歌翻译
We discover restrained numerical instabilities in current training practices of deep networks with SGD. We show numerical error (on the order of the smallest floating point bit) induced from floating point arithmetic in training deep nets can be amplified significantly and result in significant test accuracy variance, comparable to the test accuracy variance due to stochasticity in SGD. We show how this is likely traced to instabilities of the optimization dynamics that are restrained, i.e., localized over iterations and regions of the weight tensor space. We do this by presenting a theoretical framework using numerical analysis of partial differential equations (PDE), and analyzing the gradient descent PDE of a simplified convolutional neural network (CNN). We show that it is stable only under certain conditions on the learning rate and weight decay. We reproduce the localized instabilities in the PDE for the simplified network, which arise when the conditions are violated.
translated by 谷歌翻译
我们使用高斯过程扰动模型在高维二次上的真实和批量风险表面之间的高斯过程扰动模型分析和解释迭代平均的泛化性能。我们从我们的理论结果中获得了三个现象\姓名:}(1)将迭代平均值(ia)与大型学习率和正则化进行了改进的正规化的重要性。 (2)对较少频繁平均的理由。 (3)我们预计自适应梯度方法同样地工作,或者更好,而不是其非自适应对应物的迭代平均值。灵感来自这些结果\姓据{,一起与}对迭代解决方案多样性的适当正则化的重要性,我们提出了两个具有迭代平均的自适应算法。与随机梯度下降(SGD)相比,这些结果具有明显更好的结果,需要较少调谐并且不需要早期停止或验证设定监视。我们在各种现代和古典网络架构上展示了我们对CiFar-10/100,Imagenet和Penn TreeBank数据集的方法的疗效。
translated by 谷歌翻译
神经运营商最近成为设计神经网络形式的功能空间之间的解决方案映射的流行工具。不同地,从经典的科学机器学习方法,以固定分辨率为输入参数的单个实例学习参数,神经运算符近似PDE系列的解决方案图。尽管他们取得了成功,但是神经运营商的用途迄今为止仅限于相对浅的神经网络,并限制了学习隐藏的管理法律。在这项工作中,我们提出了一种新颖的非局部神经运营商,我们将其称为非本体内核网络(NKN),即独立的分辨率,其特征在于深度神经网络,并且能够处理各种任务,例如学习管理方程和分类图片。我们的NKN源于神经网络的解释,作为离散的非局部扩散反应方程,在无限层的极限中,相当于抛物线非局部方程,其稳定性通过非本种载体微积分分析。与整体形式的神经运算符相似允许NKN捕获特征空间中的远程依赖性,而节点到节点交互的持续处理使NKNS分辨率独立于NKNS分辨率。与神经杂物中的相似性,在非本体意义上重新解释,并且层之间的稳定网络动态允许NKN的最佳参数从浅到深网络中的概括。这一事实使得能够使用浅层初始化技术。我们的测试表明,NKNS在学习管理方程和图像分类任务中占据基线方法,并概括到不同的分辨率和深度。
translated by 谷歌翻译
In today's heavily overparameterized models, the value of the training loss provides few guarantees on model generalization ability. Indeed, optimizing only the training loss value, as is commonly done, can easily lead to suboptimal model quality. Motivated by prior work connecting the geometry of the loss landscape and generalization, we introduce a novel, effective procedure for instead simultaneously minimizing loss value and loss sharpness. In particular, our procedure, Sharpness-Aware Minimization (SAM), seeks parameters that lie in neighborhoods having uniformly low loss; this formulation results in a minmax optimization problem on which gradient descent can be performed efficiently. We present empirical results showing that SAM improves model generalization across a variety of benchmark datasets (e.g., CIFAR-{10, 100}, Ima-geNet, finetuning tasks) and models, yielding novel state-of-the-art performance for several. Additionally, we find that SAM natively provides robustness to label noise on par with that provided by state-of-the-art procedures that specifically target learning with noisy labels. We open source our code at https: //github.com/google-research/sam. * Work done as part of the Google AI Residency program.
translated by 谷歌翻译
卷积神经网络(CNN)的量化是缓解CNN部署的计算负担,尤其是在低资源边缘设备上的常见方法。但是,对于神经网络所涉及的计算类型,固定点算术并不是自然的。在这项工作中,我们探索了使用基于PDE的观点和分析来改善量化CNN的方法。首先,我们利用总变化方法(电视)方法将边缘意识平滑应用于整个网络的特征图。这旨在减少值分布的异常值并促进零件恒定图,这更适合量化。其次,我们考虑用于图像分类的常见CNN的对称和稳定变体,以及用于图源分类的图形卷积网络(GCN)。我们通过几个实验证明,正向稳定性的性质保留了在不同量化速率下网络的作用。结果,稳定的量化网络的行为与非量化的网络相似,即使它们依赖于较少的参数。我们还发现,有时,稳定性甚至有助于提高准确性。对于敏感,资源受限,低功率或实时应用(例如自动驾驶),这些属性特别感兴趣。
translated by 谷歌翻译
我们研究了使用尖刺,现场依赖的随机矩阵理论研究迷你批次对深神经网络损失景观的影响。我们表明,批量黑森州的极值值的大小大于经验丰富的黑森州。我们还获得了类似的结果对Hessian的概括高斯牛顿矩阵近似。由于我们的定理,我们推导出作为批量大小的最大学习速率的分析表达式,为随机梯度下降(线性缩放)和自适应算法(例如ADAM(Square Root Scaling)提供了通知实际培训方案,例如光滑,非凸深神经网络。虽然随机梯度下降的线性缩放是在我们概括的更多限制性条件下导出的,但是适应优化者的平方根缩放规则是我们的知识,完全小说。随机二阶方法和自适应方法的百分比,我们得出了最小阻尼系数与学习率与批量尺寸的比率成比例。我们在Cifar-$ 100 $和ImageNet数据集上验证了我们的VGG / WimerEsnet架构上的索赔。根据我们对象检的调查,我们基于飞行学习率和动量学习者开发了一个随机兰齐齐竞争,这避免了对这些关键的超参数进行昂贵的多重评估的需求,并在预残留的情况下显示出良好的初步结果Cifar的architecure - $ 100 $。
translated by 谷歌翻译
对共同腐败的稳健性的文献表明对逆势培训是否可以提高这种环境的性能,没有达成共识。 First, we show that, when used with an appropriately selected perturbation radius, $\ell_p$ adversarial training can serve as a strong baseline against common corruptions improving both accuracy and calibration.然后,我们解释了为什么对抗性训练比具有简单高斯噪声的数据增强更好地表现,这被观察到是对共同腐败的有意义的基线。与此相关,我们确定了高斯增强过度适用于用于培训的特定标准偏差的$ \ sigma $ -oviting现象,这对培训具有显着不利影响的普通腐败精度。我们讨论如何缓解这一问题,然后如何通过学习的感知图像贴片相似度引入对抗性训练的有效放松来进一步增强$ \ ell_p $普发的培训。通过对CiFar-10和Imagenet-100的实验,我们表明我们的方法不仅改善了$ \ ell_p $普发的培训基线,而且还有累积的收益与Augmix,Deepaulment,Ant和Sin等数据增强方法,导致普通腐败的最先进的表现。我们的实验代码在HTTPS://github.com/tml-epfl/adv-training - 窗子上公开使用。
translated by 谷歌翻译
本文提出了一种新的和富有激光激活方法,被称为FPLUS,其利用具有形式的极性标志的数学功率函数。它是通过常见的逆转操作来启发,同时赋予仿生学的直观含义。制剂在某些先前知识和预期特性的条件下理论上得出,然后通过使用典型的基准数据集通过一系列实验验证其可行性,其结果表明我们的方法在许多激活功能中拥有卓越的竞争力,以及兼容稳定性许多CNN架构。此外,我们将呈现给更广泛类型的功能延伸到称为PFPlus的函数,具有两个可以固定的或学习的参数,以便增加其表现力的容量,并且相同的测试结果验证了这种改进。
translated by 谷歌翻译
Deep Neural Networks (DNNs) training can be difficult due to vanishing and exploding gradients during weight optimization through backpropagation. To address this problem, we propose a general class of Hamiltonian DNNs (H-DNNs) that stem from the discretization of continuous-time Hamiltonian systems and include several existing DNN architectures based on ordinary differential equations. Our main result is that a broad set of H-DNNs ensures non-vanishing gradients by design for an arbitrary network depth. This is obtained by proving that, using a semi-implicit Euler discretization scheme, the backward sensitivity matrices involved in gradient computations are symplectic. We also provide an upper-bound to the magnitude of sensitivity matrices and show that exploding gradients can be controlled through regularization. Finally, we enable distributed implementations of backward and forward propagation algorithms in H-DNNs by characterizing appropriate sparsity constraints on the weight matrices. The good performance of H-DNNs is demonstrated on benchmark classification problems, including image classification with the MNIST dataset.
translated by 谷歌翻译
Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, called susceptibility, to gauge such memorization for neural networks. Susceptibility is simple and easy to compute during training. Moreover, it does not require access to ground-truth labels and it only uses unlabeled data. We empirically show the effectiveness of our metric in tracking memorization on various architectures and datasets and provide theoretical insights into the design of the susceptibility metric. Finally, we show through extensive experiments on datasets with synthetic and real-world label noise that one can utilize susceptibility and the overall training accuracy to distinguish models that maintain a low memorization on the training set and generalize well to unseen clean data.
translated by 谷歌翻译