大脑计算机界面(BCI)具有解决许多大脑信号分析局限性,精神障碍分辨率以及通过神经控制的植入物恢复缺失的肢体功能的巨大潜力。但是,尚无单一可用,并且存在安全的日常生活使用情况。大多数拟议的植入物都有多个实施问题,例如感染危害和散热,这限制了它们的可用性,并使通过法规和质量控制生产更具挑战性。无线植入物不需要颅骨慢性伤口。但是,当前植入物芯片内部的复杂聚类神经元识别算法消耗了大量功率和带宽,从而导致更高的散热问题并排出植入物的电池。尖峰分类是侵入性BCI芯片的核心单位,在功耗,准确性和区域中起着重要作用。因此,在这项研究中,我们提出了一个低功率自适应的简化VLSI体系结构,“ Zydeco风格”,用于BCI Spike Sorting,在最坏情况下,计算上的计算较差,其精度较高,高达93.5%。该体系结构使用带有外部物联网医疗ICU设备的低功率蓝牙无线通信模块。在Verilog中实现并模拟了所提出的架构。此外,我们正在提出植入概念设计。
translated by 谷歌翻译
大脑电脑接口(BCI)系统通过无肌肉活动的直接测量来支持通信。需要验证大脑电脑界面系统,以严重残疾人的真实世界使用的长期研究,并必须实施其普遍传播的有效和可行的模型。最后,必须提高BCI性能的日常和时刻瞬间可靠性,以便接近自然肌肉的功能的可靠性。本次审查讨论了BCI系统的结构和功能,阐明了术语集成和进度,并且还基于用于BCI系统的侵入性记录技术的当前可用性来识别和阐述该领域的机遇。
translated by 谷歌翻译
In the brain, information is encoded, transmitted and used to inform behaviour at the level of timing of action potentials distributed over population of neurons. To implement neural-like systems in silico, to emulate neural function, and to interface successfully with the brain, neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain. To facilitate the cross-talk between neuromorphic engineering and neuroscience, in this Review we first critically examine and summarize emerging recent findings about how population of neurons encode and transmit information. We examine the effects on encoding and readout of information for different features of neural population activity, namely the sparseness of neural representations, the heterogeneity of neural properties, the correlations among neurons, and the time scales (from short to long) at which neurons encode information and maintain it consistently over time. Finally, we critically elaborate on how these facts constrain the design of information coding in neuromorphic circuits. We focus primarily on the implications for designing neuromorphic circuits that communicate with the brain, as in this case it is essential that artificial and biological neurons use compatible neural codes. However, we also discuss implications for the design of neuromorphic systems for implementation or emulation of neural computation.
translated by 谷歌翻译
尖峰神经网络(SNN)提供了一个新的计算范式,能够高度平行,实时处理。光子设备是设计与SNN计算范式相匹配的高带宽,平行体系结构的理想选择。 CMO和光子元件的协整允许将低损耗的光子设备与模拟电子设备结合使用,以更大的非线性计算元件的灵活性。因此,我们在整体硅光子学(SIPH)过程上设计和模拟了光电尖峰神经元电路,该过程复制了超出泄漏的集成和火(LIF)之外有用的尖峰行为。此外,我们探索了两种学习算法,具有使用Mach-Zehnder干涉法(MZI)网格作为突触互连的片上学习的潜力。实验证明了随机反向传播(RPB)的变体,并在简单分类任务上与标准线性回归的性能相匹配。同时,将对比性HEBBIAN学习(CHL)规则应用于由MZI网格组成的模拟神经网络,以进行随机输入输出映射任务。受CHL训练的MZI网络的性能比随机猜测更好,但不符合理想神经网络的性能(没有MZI网格施加的约束)。通过这些努力,我们证明了协调的CMO和SIPH技术非常适合可扩展的SNN计算体系结构的设计。
translated by 谷歌翻译
Understanding how biological neural networks carry out learning using spike-based local plasticity mechanisms can lead to the development of powerful, energy-efficient, and adaptive neuromorphic processing systems. A large number of spike-based learning models have recently been proposed following different approaches. However, it is difficult to assess if and how they could be mapped onto neuromorphic hardware, and to compare their features and ease of implementation. To this end, in this survey, we provide a comprehensive overview of representative brain-inspired synaptic plasticity models and mixed-signal CMOS neuromorphic circuits within a unified framework. We review historical, bottom-up, and top-down approaches to modeling synaptic plasticity, and we identify computational primitives that can support low-latency and low-power hardware implementations of spike-based learning rules. We provide a common definition of a locality principle based on pre- and post-synaptic neuron information, which we propose as a fundamental requirement for physical implementations of synaptic plasticity. Based on this principle, we compare the properties of these models within the same framework, and describe the mixed-signal electronic circuits that implement their computing primitives, pointing out how these building blocks enable efficient on-chip and online learning in neuromorphic processing systems.
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
考虑了远程脑电图采样的弹性方面。使用运动传感器数据和用于检测失败采样通道的工业电网干扰的可能性。显示了失败通道和运动传感器数据的信号之间没有显着相关性。来自失败通道的50 Hz光谱分量的水平显着不同于正常操作通道的50 Hz分量的水平。制作了关于这些结果的应用,用于增加脑电图采样的抵抗力。
translated by 谷歌翻译
神经形态计算是一种新兴的计算范式,它从批处理的处理转向在线,事件驱动的流数据处理。当神经形态芯片与基于尖峰的传感器结合在一起时,只有在峰值时间内记录相关事件并证明对变化条件的低延迟响应时,才能通过消耗能量来固有地适应数据分布的“语义”。环境。本文为神经形态无线网络系统系统提出了端到端设计,该系统集成了基于尖峰的传感,处理和通信。在拟议的神经系统系统中,每个传感设备都配备了神经形态传感器,尖峰神经网络(SNN)和带有多个天线的脉冲无线电发射器。传输发生在配备了多Antenna脉冲无线电接收器和SNN的接收器上的共享褪色通道上进行。为了使接收器适应褪色的通道条件,我们引入了一项超网络,以使用飞行员控制解码SNN的权重。飞行员,编码SNN,解码SNN和超网络经过多个通道实现的共同训练。该系统被证明可以显着改善基于传统的基于框架的数字解决方案以及替代性非自适应训练方法,从时间到准确性和能源消耗指标方面。
translated by 谷歌翻译
传统的神经结构倾向于通过类似数量(例如电流或电压)进行通信,但是,随着CMOS设备收缩和供应电压降低,电压/电流域模拟电路的动态范围变得更窄,可用的边缘变小,噪声免疫力降低。不仅如此,在常规设计中使用操作放大器(运算放大器)和时钟或异步比较器会导致高能量消耗和大型芯片区域,这将不利于构建尖峰神经网络。鉴于此,我们提出了一种神经结构,用于生成和传输时间域信号,包括神经元模块,突触模块和两个重量模块。所提出的神经结构是由晶体管三极区域的泄漏电流驱动的,不使用操作放大器和比较器,因此与常规设计相比,能够提供更高的能量和面积效率。此外,由于内部通信通过时间域信号,该结构提供了更大的噪声免疫力,从而简化了模块之间的接线。提出的神经结构是使用TSMC 65 nm CMOS技术制造的。拟议的神经元和突触分别占据了127 UM2和231 UM2的面积,同时达到了毫秒的时间常数。实际芯片测量表明,所提出的结构成功地用毫秒的时间常数实现了时间信号通信函数,这是迈向人机交互的硬件储层计算的关键步骤。
translated by 谷歌翻译
Guillain-Barre综合征是一种罕见的神经系统疾病,其中人免疫系统攻击周围神经系统。周围神经系统似乎是神经元模型的数学模型的扩散连接系统,并且该系统的周期比每个神经回路的周期都短。传导路径中的刺激将被轴突接收到失去其功能的髓鞘鞘,并在外部传递到靶器官,旨在解决降低神经传导的问题。在神经元模拟环境中,可以创建神经元模型并定义系统内发生的生物物理事件。在这种环境中,细胞和树突之间的信号传递是图形的。模拟的钾和钠电导是充分复制的,电子动作电位与实验测量的电位相当。在这项工作中,我们提出了一个模拟和数字耦合的神经元模型,该模型包括个人兴奋性和抑制性神经回路块,用于低成本和节能系统。与数字设计相比,我们的模拟设计的性能较低,但能源效率降低了32.3 \%。因此,所得的耦合模拟硬件神经元模型可以是模拟神经传导减少的模型。结果,模拟耦合的神经元(即使具有更大的设计复杂性)为未来开发的可穿戴传感器设备的竞争者,该设备可能有助于治疗吉兰 - 巴雷综合症和其他神经系统疾病。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
在这项工作中,我们提出了一种基于从Marmoset猴的大脑收集的局部场潜在数据,提出了与帕金森病相关的新生物物理计算模型。帕金森病是一种神经退行性疾病,与大量NIGRA PARSCACTCA的多巴胺能神经元的死亡有关,这影响了大脑基底神经节 - 丘脑 - 皮质神经元电路的正常动态。尽管存在多种疾病的机制,但仍然缺少这些机制和分子发病机制的完整描述,仍然没有治愈。为了解决这种差距,已经提出了类似于动物模型中发现的神经生物学方面的计算模型。在我们的模型中,我们执行了一种数据驱动方法,其中使用差分演变优化了一组生物学限制参数。进化模型成功地类似于来自健康和Parkinsonian Marmoset脑数据的单神经元均值射击和局部场势的光谱签名。据我们所知,这是帕金森病的第一个基于来自Marmoset Monkeys的七个脑区域的同时电生理学记录的第一个计算模型。结果表明,该拟议的模型可以促进PD机制的调查,并支持可以表明新疗法的技术的发展。它还可以应用于其他计算神经科学问题,其中可以使用生物数据来适应大规模模型的脑电路。
translated by 谷歌翻译
第五代(5G)网络和超越设想巨大的东西互联网(物联网)推出,以支持延长现实(XR),增强/虚拟现实(AR / VR),工业自动化,自主驾驶和智能所有带来的破坏性应用一起占用射频(RF)频谱的大规模和多样化的IOT设备。随着频谱嘎嘎和吞吐量挑战,这种大规模的无线设备暴露了前所未有的威胁表面。 RF指纹识别是预约的作为候选技术,可以与加密和零信任安全措施相结合,以确保无线网络中的数据隐私,机密性和完整性。在未来的通信网络中,在这项工作中,在未来的通信网络中的相关性,我们对RF指纹识别方法进行了全面的调查,从传统观点到最近的基于深度学习(DL)的算法。现有的调查大多专注于无线指纹方法的受限制呈现,然而,许多方面仍然是不可能的。然而,在这项工作中,我们通过解决信号智能(SIGINT),应用程序,相关DL算法,RF指纹技术的系统文献综述来缓解这一点,跨越过去二十年的RF指纹技术的系统文献综述,对数据集和潜在研究途径的讨论 - 必须以百科全书的方式阐明读者的必要条件。
translated by 谷歌翻译
尖峰神经网络(SNN)引起了脑启发的人工智能和计算神经科学的广泛关注。它们可用于在多个尺度上模拟大脑中的生物信息处理。更重要的是,SNN是适当的抽象水平,可以将大脑和认知的灵感带入人工智能。在本文中,我们介绍了脑启发的认知智力引擎(Braincog),用于创建脑启发的AI和脑模拟模型。 Braincog将不同类型的尖峰神经元模型,学习规则,大脑区域等作为平台提供的重要模块。基于这些易于使用的模块,BrainCog支持各种受脑启发的认知功能,包括感知和学习,决策,知识表示和推理,运动控制和社会认知。这些受脑启发的AI模型已在各种受监督,无监督和强化学习任务上有效验证,并且可以用来使AI模型具有多种受脑启发的认知功能。为了进行大脑模拟,Braincog实现了决策,工作记忆,神经回路的结构模拟以及小鼠大脑,猕猴大脑和人脑的整个大脑结构模拟的功能模拟。一个名为BORN的AI引擎是基于Braincog开发的,它演示了如何将Braincog的组件集成并用于构建AI模型和应用。为了使科学追求解码生物智能的性质并创建AI,Braincog旨在提供必要且易于使用的构件,并提供基础设施支持,以开发基于脑部的尖峰神经网络AI,并模拟认知大脑在多个尺度上。可以在https://github.com/braincog-x上找到Braincog的在线存储库。
translated by 谷歌翻译
The term ``neuromorphic'' refers to systems that are closely resembling the architecture and/or the dynamics of biological neural networks. Typical examples are novel computer chips designed to mimic the architecture of a biological brain, or sensors that get inspiration from, e.g., the visual or olfactory systems in insects and mammals to acquire information about the environment. This approach is not without ambition as it promises to enable engineered devices able to reproduce the level of performance observed in biological organisms -- the main immediate advantage being the efficient use of scarce resources, which translates into low power requirements. The emphasis on low power and energy efficiency of neuromorphic devices is a perfect match for space applications. Spacecraft -- especially miniaturized ones -- have strict energy constraints as they need to operate in an environment which is scarce with resources and extremely hostile. In this work we present an overview of early attempts made to study a neuromorphic approach in a space context at the European Space Agency's (ESA) Advanced Concepts Team (ACT).
translated by 谷歌翻译
尖峰神经网络的事件驱动性质使它们具有生物学上可符合的和比人工神经网络更节能。在这项工作中,我们展示了二维视野中对象的运动检测。这里呈现的网络架构是生物学卓越的,并使用CMOS模拟泄漏整合和灭火神经元和超低功耗多层RRAM突触。具体的跨晶体管纤维Spice模拟表明,所提出的结构可以在二维视野中准确可靠地检测物体的复杂运动。
translated by 谷歌翻译
更具体地说,神经系统能够简单有效地解决复杂的问题,超过现代计算机。在这方面,神经形态工程是一个研究领域,重点是模仿控制大脑的基本原理,以开发实现此类计算能力的系统。在该领域中,生物启发的学习和记忆系统仍然是要解决的挑战,这就是海马涉及的地方。正是大脑的区域充当短期记忆,从而从大脑皮层的所有感觉核中学习,非结构化和快速存储信息及其随后的回忆。在这项工作中,我们提出了一个基于海马的新型生物启发的记忆模型,具有学习记忆的能力,从提示中回顾它们(与其他内容相关的记忆的一部分),甚至在尝试时忘记记忆通过相同的提示学习其他人。该模型已在使用尖峰神经网络上在大型摩托车硬件平台上实现,并进行了一组实验和测试以证明其正确且预期的操作。所提出的基于SPIKE的内存模型仅在接收输入,能提供节能的情况下才能生成SPIKES,并且需要7个时间步,用于学习步骤和6个时间段来召回以前存储的存储器。这项工作介绍了基于生物启发的峰值海马记忆模型的第一个硬件实现,为开发未来更复杂的神经形态系统的发展铺平了道路。
translated by 谷歌翻译
To increase the quality of citizens' lives, we designed a personalized smart chair system to recognize sitting behaviors. The system can receive surface pressure data from the designed sensor and provide feedback for guiding the user towards proper sitting postures. We used a liquid state machine and a logistic regression classifier to construct a spiking neural network for classifying 15 sitting postures. To allow this system to read our pressure data into the spiking neurons, we designed an algorithm to encode map-like data into cosine-rank sparsity data. The experimental results consisting of 15 sitting postures from 19 participants show that the prediction precision of our SNN is 88.52%.
translated by 谷歌翻译
人工智能革命(AI)提出了巨大的存储和数据处理要求。大量的功耗和硬件开销已成为构建下一代AI硬件的主要挑战。为了减轻这种情况,神经形态计算引起了极大的关注,因为它在功耗非常低的功能方面具有出色的数据处理能力。尽管无情的研究已经进行了多年,以最大程度地减少神经形态硬件的功耗,但我们离达到人脑的能源效率还有很长的路要走。此外,设计复杂性和过程变化阻碍了当前神经形态平台的大规模实现。最近,由于其出色的速度和功率指标,在低温温度中实施神经形态计算系统的概念引起了人们的兴趣。可以设计几种低温装置,可作为具有超低功率需求的神经形态原始设备。在这里,我们全面回顾了低温神经形态硬件。我们将现有的低温神经形态硬件分类为几个分层类别,并根据关键性能指标绘制比较分析。我们的分析简洁地描述了相关电路拓扑的操作,并概述了最先进的技术平台遇到的优势和挑战。最后,我们提供了见解,以规避这些挑战,以实现未来的研究发展。
translated by 谷歌翻译
在过去的几十年中,人工智能领域大大进展,灵感来自生物学和神经科学领域的发现。这项工作的想法是由来自传入和横向/内部联系的人脑中皮质区域的自组织过程的过程启发。在这项工作中,我们开发了一个原始的脑激发神经模型,将自组织地图(SOM)和Hebbian学习在重新参与索马里(RESOM)模型中。该框架应用于多模式分类问题。与基于未经监督的学习的现有方法相比,该模型增强了最先进的结果。这项工作还通过在名为SPARP(自配置3D蜂窝自适应平台)的专用FPGA的平台上的模拟结果和硬件执行,演示了模型的分布式和可扩展性。头皮板可以以模块化方式互连,以支持神经模型的结构。这种统一的软件和硬件方法使得能够缩放处理并允许来自多个模态的信息进行动态合并。硬件板上的部署提供了在多个设备上并行执行的性能结果,通过专用串行链路在每个板之间的通信。由于多模式关联,所提出的统一架构,由RESOM模型和头皮硬件平台组成的精度显着提高,与集中式GPU实现相比,延迟和功耗之间的良好折衷。
translated by 谷歌翻译