This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
3D对象检测是自动驾驶的重要组成部分,深层神经网络(DNNS)已达到此任务的最新性能。但是,深层模型臭名昭著,因为将高置信度得分分配给分布(OOD)输入,即未从训练分布中得出的输入。检测OOD输入是具有挑战性的,对于模型的安全部署至关重要。已经针对分类任务进行了广泛研究OOD检测,但是它尚未对对象检测任务,特别是基于激光雷达的3D对象检测的注意力。在本文中,我们关注基于激光雷达的3D对象检测的OOD输入的检测。我们制定了OOD输入对于对象检测的含义,并提议适应几种OOD检测方法进行对象检测。我们通过提出的特征提取方法来实现这一目标。为了评估OOD检测方法,我们开发了一种简单但有效的技术,用于为给定的对象检测模型生成OOD对象​​。我们基于KITTI数据集的评估表明,不同的OOD检测方法具有检测特定OOD对象​​的偏差。它强调了联合OOD检测方法的重要性以及在这个方向上进行更多研究。
translated by 谷歌翻译
由于经过验证的2D检测技术的适用性,大多数当前点云检测器都广泛采用了鸟类视图(BEV)。但是,现有方法通过简单地沿高度尺寸折叠的体素或点特征来获得BEV特征,从而导致3D空间信息的重丢失。为了减轻信息丢失,我们提出了一个基于多级特征降低降低策略的新颖点云检测网络,称为MDRNET。在MDRNET中,空间感知的维度降低(SDR)旨在在体素至BEV特征转换过程中动态关注对象的宝贵部分。此外,提出了多级空间残差(MSR),以融合BEV特征图中的多级空间信息。关于Nuscenes的广泛实验表明,该提出的方法的表现优于最新方法。该代码将在出版时提供。
translated by 谷歌翻译
本地图像功能匹配,旨在识别图像对的识别和相应的相似区域,是计算机视觉中的重要概念。大多数现有的图像匹配方法遵循一对一的分配原则,并采用共同最近的邻居来确保跨图像之间本地特征之间的独特对应关系。但是,来自不同条件的图像可能会容纳大规模变化或观点多样性,以便一对一的分配可能在密集匹配中导致模棱两可或丢失的表示形式。在本文中,我们介绍了一种新颖的无探测器本地特征匹配方法Adamatcher,该方法首先通过轻巧的特征交互模块与密集的特征相关联,并估算了配对图像的可见面积,然后执行贴片级多到 - 一个分配可以预测匹配建议,并最终根据一对一的完善模块进行完善。广泛的实验表明,Adamatcher的表现优于固体基线,并在许多下游任务上实现最先进的结果。此外,多对一分配和一对一的完善模块可以用作其他匹配方法(例如Superglue)的改进网络,以进一步提高其性能。代码将在出版时提供。
translated by 谷歌翻译
自我监督学习(SSL)是一种新兴技术,已成功地用于培训卷积神经网络(CNNS)和图形神经网络(GNNS),以进行更可转移,可转换,可推广和稳健的代表性学习。然而,很少探索其对自动驾驶的运动预测。在这项研究中,我们报告了将自学纳入运动预测的首次系统探索和评估。我们首先建议研究四项新型的自我监督学习任务,以通过理论原理以及对挑战性的大规模argoverse数据集进行运动预测以及定量和定性比较。其次,我们指出,基于辅助SSL的学习设置不仅胜过预测方法,这些方法在性能准确性方面使用变压器,复杂的融合机制和复杂的在线密集目标候选优化算法,而且具有较低的推理时间和建筑复杂性。最后,我们进行了几项实验,以了解为什么SSL改善运动预测。代码在\ url {https://github.com/autovision-cloud/ssl-lanes}上开源。
translated by 谷歌翻译
安全保证是自动驾驶(AD)系统发展和社会接受(AD)系统的核心问题。感知是广告的关键方面,严重依赖机器学习(ML)。尽管基于ML的组件的安全性有已知的挑战,但最近已经提出针对解决这些组件的单位安全案例的建议。不幸的是,AD安全案例在系统级别上表示安全要求,这些努力缺少将安全性要求与单位级别的组件性能要求整合在一起所需的关键链接参数。在本文中,我们提出了感知的集成安全案例(ISCAP),这是针对专门针对感知组件量身定制的这种链接安全参数的通用模板。该模板采用演绎且形式上的方法来定义级别之间强大的可追溯性。我们通过详细的案例研究证明了ISCAP的适用性,并讨论了其作为支持感知成分增量发展的工具的使用。
translated by 谷歌翻译
灵感来自生物进化,我们通过比喻与经过验证的实用进化算法(EA)进行了类比的愿景变压器的合理性,并导致它们两者都有一致的数学表示。类似于EA的动态局部人口,我们改善了现有的变压器结构,并提出了更有效的吃模型,并设计任务相关的头来处理不同的任务更灵活。此外,我们将空间填充曲线介绍到电流视觉变压器中以将图像数据序列为均匀的顺序格式。因此,我们可以设计一个统一的Eat框架来解决多模式任务,将网络架构与数据格式自适应分开。与最近的视觉变压器工作相比,我们的方法对ImageNet分类任务进行了最先进的结果,同时具有较小的参数和更高的吞吐量。我们进一步开展多模态任务,以展示统一的饮食的优越性,例如基于文本的图像检索,我们的方法在CSS数据集上的基线上通过+3.7点提高了+3.7点。
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
The task of Few-shot learning (FSL) aims to transfer the knowledge learned from base categories with sufficient labelled data to novel categories with scarce known information. It is currently an important research question and has great practical values in the real-world applications. Despite extensive previous efforts are made on few-shot learning tasks, we emphasize that most existing methods did not take into account the distributional shift caused by sample selection bias in the FSL scenario. Such a selection bias can induce spurious correlation between the semantic causal features, that are causally and semantically related to the class label, and the other non-causal features. Critically, the former ones should be invariant across changes in distributions, highly related to the classes of interest, and thus well generalizable to novel classes, while the latter ones are not stable to changes in the distribution. To resolve this problem, we propose a novel data augmentation strategy dubbed as PatchMix that can break this spurious dependency by replacing the patch-level information and supervision of the query images with random gallery images from different classes from the query ones. We theoretically show that such an augmentation mechanism, different from existing ones, is able to identify the causal features. To further make these features to be discriminative enough for classification, we propose Correlation-guided Reconstruction (CGR) and Hardness-Aware module for instance discrimination and easier discrimination between similar classes. Moreover, such a framework can be adapted to the unsupervised FSL scenario.
translated by 谷歌翻译
准确可靠的传感器校准对于在自主驾驶中融合激光雷达和惯性测量至关重要。本文提出了一种新型的3D-LIDAR和姿势传感器的新型三阶段外部校准方法,用于自主驾驶。第一阶段可以通过点云表面特征快速校准传感器之间的外部参数,以便可以将外部参数从大的初始误差范围缩小到很小的时间范围。第二阶段可以基于激光映射空间占用率进一步校准外部参数,同时消除运动失真。在最后阶段,校正了由自动驾驶汽车的平面运动引起的Z轴误差,并最终获得了精确的外部参数。具体而言,该方法利用了道路场景的自然特征,使其独立且易于在大规模条件下应用。现实世界数据集的实验结果证明了我们方法的可靠性和准确性。这些代码是在GitHub网站上开源的。据我们所知,这是第一个专门为自动驾驶设计的开源代码,用于校准激光雷达和姿势传感器外部参数。代码链接是https://github.com/opencalib/lidar2ins。
translated by 谷歌翻译