剩下的交叉验证(LOO-CV)是一种估计样本外预测准确性的流行方法。但是,由于需要多次拟合模型,因此计算LOO-CV标准在计算上可能很昂贵。在贝叶斯的情况下,重要性采样提供了一种可能的解决方案,但是经典方法可以轻松地产生差异是无限的估计器,从而使它们可能不可靠。在这里,我们提出和分析一种新型混合估计量来计算贝叶斯Loo-CV标准。我们的方法保留了经典方法的简单性和计算便利性,同时保证了所得估计器的有限差异。提供了理论和数值结果,以说明提高的鲁棒性和效率。在高维问题中,计算益处尤为重要,可以为更广泛的模型执行贝叶斯loo-CV。所提出的方法可以在标准概率编程软件中很容易实现,并且计算成本大致相当于拟合原始模型一次。
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.
translated by 谷歌翻译
Neuromorphic systems require user-friendly software to support the design and optimization of experiments. In this work, we address this need by presenting our development of a machine learning-based modeling framework for the BrainScaleS-2 neuromorphic system. This work represents an improvement over previous efforts, which either focused on the matrix-multiplication mode of BrainScaleS-2 or lacked full automation. Our framework, called hxtorch.snn, enables the hardware-in-the-loop training of spiking neural networks within PyTorch, including support for auto differentiation in a fully-automated hardware experiment workflow. In addition, hxtorch.snn facilitates seamless transitions between emulating on hardware and simulating in software. We demonstrate the capabilities of hxtorch.snn on a classification task using the Yin-Yang dataset employing a gradient-based approach with surrogate gradients and densely sampled membrane observations from the BrainScaleS-2 hardware system.
translated by 谷歌翻译
We seek methods to model, control, and analyze robot teams performing environmental monitoring tasks. During environmental monitoring, the goal is to have teams of robots collect various data throughout a fixed region for extended periods of time. Standard bottom-up task assignment methods do not scale as the number of robots and task locations increases and require computationally expensive replanning. Alternatively, top-down methods have been used to combat computational complexity, but most have been limited to the analysis of methods which focus on transition times between tasks. In this work, we study a class of nonlinear macroscopic models which we use to control a time-varying distribution of robots performing different tasks throughout an environment. Our proposed ensemble model and control maintains desired time-varying populations of robots by leveraging naturally occurring interactions between robots performing tasks. We validate our approach at multiple fidelity levels including experimental results, suggesting the effectiveness of our approach to perform environmental monitoring.
translated by 谷歌翻译
Generalisation to unseen contexts remains a challenge for embodied navigation agents. In the context of semantic audio-visual navigation (SAVi) tasks, the notion of generalisation should include both generalising to unseen indoor visual scenes as well as generalising to unheard sounding objects. However, previous SAVi task definitions do not include evaluation conditions on truly novel sounding objects, resorting instead to evaluating agents on unheard sound clips of known objects; meanwhile, previous SAVi methods do not include explicit mechanisms for incorporating domain knowledge about object and region semantics. These weaknesses limit the development and assessment of models' abilities to generalise their learned experience. In this work, we introduce the use of knowledge-driven scene priors in the semantic audio-visual embodied navigation task: we combine semantic information from our novel knowledge graph that encodes object-region relations, spatial knowledge from dual Graph Encoder Networks, and background knowledge from a series of pre-training tasks -- all within a reinforcement learning framework for audio-visual navigation. We also define a new audio-visual navigation sub-task, where agents are evaluated on novel sounding objects, as opposed to unheard clips of known objects. We show improvements over strong baselines in generalisation to unseen regions and novel sounding objects, within the Habitat-Matterport3D simulation environment, under the SoundSpaces task.
translated by 谷歌翻译
The field of robotics, and more especially humanoid robotics, has several established competitions with research oriented goals in mind. Challenging the robots in a handful of tasks, these competitions provide a way to gauge the state of the art in robotic design, as well as an indicator for how far we are from reaching human performance. The most notable competitions are RoboCup, which has the long-term goal of competing against a real human team in 2050, and the FIRA HuroCup league, in which humanoid robots have to perform tasks based on actual Olympic events. Having robots compete against humans under the same rules is a challenging goal, and, we believe that it is in the sport of archery that humanoid robots have the most potential to achieve it in the near future. In this work, we perform a first step in this direction. We present a humanoid robot that is capable of gripping, drawing and shooting a recurve bow at a target 10 meters away with considerable accuracy. Additionally, we show that it is also capable of shooting distances of over 50 meters.
translated by 谷歌翻译
Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.
translated by 谷歌翻译
Multi-document summarization (MDS) has traditionally been studied assuming a set of ground-truth topic-related input documents is provided. In practice, the input document set is unlikely to be available a priori and would need to be retrieved based on an information need, a setting we call open-domain MDS. We experiment with current state-of-the-art retrieval and summarization models on several popular MDS datasets extended to the open-domain setting. We find that existing summarizers suffer large reductions in performance when applied as-is to this more realistic task, though training summarizers with retrieved inputs can reduce their sensitivity retrieval errors. To further probe these findings, we conduct perturbation experiments on summarizer inputs to study the impact of different types of document retrieval errors. Based on our results, we provide practical guidelines to help facilitate a shift to open-domain MDS. We release our code and experimental results alongside all data or model artifacts created during our investigation.
translated by 谷歌翻译
Any strategy used to distribute a robot ensemble over a set of sequential tasks is subject to inaccuracy due to robot-level uncertainties and environmental influences on the robots' behavior. We approach the problem of inaccuracy during task allocation by modeling and controlling the overall ensemble behavior. Our model represents the allocation problem as a stochastic jump process and we regulate the mean and variance of such a process. The main contributions of this paper are: Establishing a structure for the transition rates of the equivalent stochastic jump process and formally showing that this approach leads to decoupled parameters that allow us to adjust the first- and second-order moments of the ensemble distribution over tasks, which gives the flexibility to decrease the variance in the desired final distribution. This allows us to directly shape the impact of uncertainties on the group allocation over tasks. We introduce a detailed procedure to design the gains to achieve the desired mean and show how the additional parameters impact the covariance matrix, which is directly associated with the degree of task allocation precision. Our simulation and experimental results illustrate the successful control of several robot ensembles during task allocation.
translated by 谷歌翻译