剩下的交叉验证(LOO-CV)是一种估计样本外预测准确性的流行方法。但是,由于需要多次拟合模型,因此计算LOO-CV标准在计算上可能很昂贵。在贝叶斯的情况下,重要性采样提供了一种可能的解决方案,但是经典方法可以轻松地产生差异是无限的估计器,从而使它们可能不可靠。在这里,我们提出和分析一种新型混合估计量来计算贝叶斯Loo-CV标准。我们的方法保留了经典方法的简单性和计算便利性,同时保证了所得估计器的有限差异。提供了理论和数值结果,以说明提高的鲁棒性和效率。在高维问题中,计算益处尤为重要,可以为更广泛的模型执行贝叶斯loo-CV。所提出的方法可以在标准概率编程软件中很容易实现,并且计算成本大致相当于拟合原始模型一次。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
重要的加权是调整蒙特卡洛集成以说明错误分布中抽取的一种一般方法,但是当重要性比的右尾巴较重时,最终的估计值可能是高度可变的。当目标分布的某些方面无法通过近似分布捕获,在这种情况下,可以通过修改极端重要性比率来获得更稳定的估计。我们提出了一种新的方法,该方法使用拟合模拟重要性比率的上尾的广义帕累托分布来稳定重要性权重。该方法在经验上的性能要比现有方法稳定重要性采样估计值更好,包括稳定的有效样本量估计,蒙特卡洛误差估计和收敛诊断。提出的帕累托$ \ hat {k} $有限样本收敛率诊断对任何蒙特卡洛估计器都有用。
translated by 谷歌翻译
在使用多模式贝叶斯后部分布时,马尔可夫链蒙特卡罗(MCMC)算法难以在模式之间移动,并且默认变分或基于模式的近似推动将低估后不确定性。并且,即使找到最重要的模式,难以评估后部的相对重量。在这里,我们提出了一种使用MCMC,变分或基于模式的模式的并行运行的方法,以便尽可能多地击中多种模式或分离的区域,然后使用贝叶斯堆叠来组合这些用于构建分布的加权平均值的可扩展方法。通过堆叠从多模式后分布的堆叠,最小化交叉验证预测误差的结果,并且代表了比变分推断更好的不确定度,但它不一定是相当于渐近的,以完全贝叶斯推断。我们呈现理论一致性,其中堆叠推断逼近来自未衰退的模型和非混合采样器的真实数据生成过程,预测性能优于完全贝叶斯推断,因此可以被视为祝福而不是模型拼写下的诅咒。我们展示了几个模型家庭的实际实施:潜在的Dirichlet分配,高斯过程回归,分层回归,马蹄素变量选择和神经网络。
translated by 谷歌翻译
我们提出了一种使用边缘似然的分布式贝叶斯模型选择的一般方法,其中数据集被分开在非重叠子集中。这些子集仅由个别工人本地访问,工人之间没有共享数据。我们近似通过在每个子集的每个子集上从后部采样通过Monte Carlo采样的完整数据的模型证据。结果使用一种新的方法来组合,该方法校正使用所产生的样本的汇总统计分裂。我们的鸿沟和征服方法使贝叶斯模型在大型数据设置中选择,利用所有可用信息,而是限制工人之间的沟通。我们派生了理论误差界限,这些错误界限量化了计算增益与精度损失之间的结果。当我们的真实世界实验所示,令人尴尬的平行性质在大规模数据集时产生了重要的速度。此外,我们展示了如何在可逆跳转设置中扩展建议的方法以在可逆跳转设置中进行模型选择,该跳转设置在一个运行中探讨多个特征组合。
translated by 谷歌翻译
离散状态空间代表了对统计推断的主要计算挑战,因为归一化常数的计算需要在大型或可能的无限集中进行求和,这可能是不切实际的。本文通过开发适合离散可怜的可能性的新型贝叶斯推理程序来解决这一计算挑战。受到连续数据的最新方法学进步的启发,主要思想是使用离散的Fisher Divergence更新有关模型参数的信念,以代替有问题的棘手的可能性。结果是可以使用标准计算工具(例如Markov Chain Monte Carlo)进行采样的广义后部,从而规避了棘手的归一化常数。分析了广义后验的统计特性,并具有足够的后验一致性和渐近正态性的条件。此外,提出了一种新颖的通用后代校准方法。应用程序在离散空间数据的晶格模型和计数数据的多元模型上介绍,在每种情况下,方法论都以低计算成本促进通用的贝叶斯推断。
translated by 谷歌翻译
贝叶斯推理允许在贝叶斯神经网络的上下文中获取有关模型参数的有用信息,或者在贝叶斯神经网络的背景下。通常的Monte Carlo方法的计算成本,用于在贝叶斯推理中对贝叶斯推理的后验法律进行线性点的数量与数据点的数量进行线性。将其降低到这一成本的一小部分的一种选择是使用Langevin动态的未经调整的离散化来诉诸Mini-Batching,在这种情况下,只使用数据的随机分数来估计梯度。然而,这导致动态中的额外噪声,因此在马尔可夫链采样的不变度量上的偏差。我们倡导使用所谓的自适应Langevin动态,这是一种改进标准惯性Langevin动态,其动态摩擦力,可自动校正迷你批次引起的增加的噪声。我们调查假设适应性Langevin的假设(恒定协方差估计梯度的恒定协方差),这在贝叶斯推理的典型模型中不满足,并在这种情况下量化小型匹配诱导的偏差。我们还展示了如何扩展ADL,以便通过考虑根据参数的当前值来系统地减少后部分布的偏置。
translated by 谷歌翻译
重要性采样(IS)是一种使用来自建议分布和相关重要性权重的独立样本在目标分布下近似期望的方法。在许多应用中,只有直到归一化常数才知道目标分布,在这种情况下,可以使用自称为(SNIS)。虽然自我正态化的使用可能会对估计量的分散产生积极影响,但它引入了偏见。在这项工作中,我们提出了一种新方法BR-SNIS,其复杂性与SNI的复杂性基本相同,并且显着降低了偏见而不增加差异。这种方法是一种包装器,从某种意义上说,它使用了与SNIS相同的建议样本和重要性权重,但巧妙地使用了迭代采样(ISIR)重新采样(ISIR)来形成估算器的偏置版本。我们为提出的算法提供了严格的理论结果,包括新的偏见,方差和高概率界限,这些算法由数值示例进行了说明。
translated by 谷歌翻译
广义贝叶斯推理使用损失函数而不是可能性的先前信仰更新,因此可以用于赋予鲁棒性,以防止可能的错误规范的可能性。在这里,我们认为广泛化的贝叶斯推论斯坦坦差异作为损失函数的损失,由应用程序的可能性含有难治性归一化常数。在这种情况下,斯坦因差异来避免归一化恒定的评估,并产生封闭形式或使用标准马尔可夫链蒙特卡罗的通用后出版物。在理论层面上,我们显示了一致性,渐近的正常性和偏见 - 稳健性,突出了这些物业如何受到斯坦因差异的选择。然后,我们提供关于一系列棘手分布的数值实验,包括基于内核的指数家庭模型和非高斯图形模型的应用。
translated by 谷歌翻译
我们引入了一种新的经验贝叶斯方法,用于大规模多线性回归。我们的方法结合了两个关键思想:(i)使用灵活的“自适应收缩”先验,该先验近似于正常分布的有限混合物,近似于正常分布的非参数家族; (ii)使用变分近似来有效估计先前的超参数并计算近似后期。将这两个想法结合起来,将快速,灵活的方法与计算速度相当,可与快速惩罚的回归方法(例如Lasso)相当,并在各种场景中具有出色的预测准确性。此外,我们表明,我们方法中的后验平均值可以解释为解决惩罚性回归问题,并通过直接解决优化问题(而不是通过交叉验证来调整)从数据中学到的惩罚函数的精确形式。 。我们的方法是在r https://github.com/stephenslab/mr.ash.ash.alpha的r软件包中实现的
translated by 谷歌翻译
无似然方法是对可以模拟的隐式模型执行推断的必不可少的工具,但相应的可能性是棘手的。但是,常见的无可能方法不能很好地扩展到大量模型参数。一种有前途的无可能推理的有前途的方法涉及通过仅根据据信为低维成分提供信息的摘要统计数据来估计低维边缘后期,然后在某种程度上结合了低维近似值。在本文中,我们证明,对于看似直观的汇总统计选择,这种低维近似值在实践中可能是差的。我们描述了一个理想化的低维汇总统计量,原则上适用于边际估计。但是,在实践中很难直接近似理想的选择。因此,我们提出了一种替代的边际估计方法,该方法更容易实施和自动化。考虑到初始选择的低维摘要统计量可能仅对边缘后验位置有用,新方法通过使用所有摘要统计数据来确保全局可识别性来提高性能,从而提高性能使用低维摘要统计量进行精确的低维近似。我们表明,该方法的后部可以分别基于低维和完整的摘要统计数据将其表示为后验分布的对数库。在几个示例中说明了我们方法的良好性能。
translated by 谷歌翻译
嵌套模拟涉及通过模拟估算条件期望的功能。在本文中,我们提出了一种基于内核RIDGE回归的新方法,利用作为多维调节变量的函数的条件期望的平滑度。渐近分析表明,随着仿真预算的增加,所提出的方法可以有效地减轻了对收敛速度的维度诅咒,只要条件期望足够平滑。平滑度桥接立方根收敛速度之间的间隙(即标准嵌套模拟的最佳速率)和平方根收敛速率(即标准蒙特卡罗模拟的规范率)。我们通过来自投资组合风险管理和输入不确定性量化的数值例子来证明所提出的方法的性能。
translated by 谷歌翻译
利用启发式来评估收敛性和压缩马尔可夫链蒙特卡罗的输出可以在生产的经验逼近时是次优。通常,许多初始状态归因于“燃烧”并移除,而链条的其余部分是“变薄”,如果还需要压缩。在本文中,我们考虑回顾性地从样本路径中选择固定基数的状态的问题,使得由其经验分布提供的近似接近最佳。提出了一种基于核心稳定性差异的贪婪最小化的新方法,这适用于需要重压力的问题。理论结果保障方法的一致性及其有效性在常微分方程的参数推理的具体背景下证明了该效果。软件可在Python,R和Matlab中的Stein细化包中提供。
translated by 谷歌翻译
近年来目睹了采用灵活的机械学习模型进行乐器变量(IV)回归的兴趣,但仍然缺乏不确定性量化方法的发展。在这项工作中,我们为IV次数回归提出了一种新的Quasi-Bayesian程序,建立了最近开发的核化IV模型和IV回归的双/极小配方。我们通过在$ l_2 $和sobolev规范中建立最低限度的最佳收缩率,并讨论可信球的常见有效性来分析所提出的方法的频繁行为。我们进一步推出了一种可扩展的推理算法,可以扩展到与宽神经网络模型一起工作。实证评价表明,我们的方法对复杂的高维问题产生了丰富的不确定性估计。
translated by 谷歌翻译
我们在对数损失下引入条件密度估计的过程,我们调用SMP(样本Minmax预测器)。该估算器最大限度地减少了统计学习的新一般过度风险。在标准示例中,此绑定量表为$ d / n $,$ d $ d $模型维度和$ n $ sample大小,并在模型拼写条目下批判性仍然有效。作为一个不当(超出型号)的程序,SMP在模型内估算器(如最大似然估计)的内部估算器上,其风险过高的风险降低。相比,与顺序问题的方法相比,我们的界限删除了SubOltimal $ \ log n $因子,可以处理无限的类。对于高斯线性模型,SMP的预测和风险受到协变量的杠杆分数,几乎匹配了在没有条件的线性模型的噪声方差或近似误差的条件下匹配的最佳风险。对于Logistic回归,SMP提供了一种非贝叶斯方法来校准依赖于虚拟样本的概率预测,并且可以通过解决两个逻辑回归来计算。它达到了$ O的非渐近风险((d + b ^ 2r ^ 2)/ n)$,其中$ r $绑定了特征的规范和比较参数的$ B $。相比之下,在模型内估计器内没有比$ \ min达到更好的速率({b r} / {\ sqrt {n}},{d e ^ {br} / {n})$。这为贝叶斯方法提供了更实用的替代方法,这需要近似的后部采样,从而部分地解决了Foster等人提出的问题。 (2018)。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
We develop a general framework for distribution-free predictive inference in regression, using conformal inference. The proposed methodology allows for the construction of a prediction band for the response variable using any estimator of the regression function. The resulting prediction band preserves the consistency properties of the original estimator under standard assumptions, while guaranteeing finite-sample marginal coverage even when these assumptions do not hold. We analyze and compare, both empirically and theoretically, the two major variants of our conformal framework: full conformal inference and split conformal inference, along with a related jackknife method. These methods offer different tradeoffs between statistical accuracy (length of resulting prediction intervals) and computational efficiency. As extensions, we develop a method for constructing valid in-sample prediction intervals called rank-one-out conformal inference, which has essentially the same computational efficiency as split conformal inference. We also describe an extension of our procedures for producing prediction bands with locally varying length, in order to adapt to heteroskedascity in the data. Finally, we propose a model-free notion of variable importance, called leave-one-covariate-out or LOCO inference. Accompanying this paper is an R package conformalInference that implements all of the proposals we have introduced. In the spirit of reproducibility, all of our empirical results can also be easily (re)generated using this package.
translated by 谷歌翻译
交叉验证是一种广泛使用的技术来估计预测误差,但其行为很复杂且不完全理解。理想情况下,人们想认为,交叉验证估计手头模型的预测错误,适合训练数据。我们证明,普通最小二乘拟合的线性模型并非如此。相反,它估计模型的平均预测误差适合于同一人群提取的其他看不见的训练集。我们进一步表明,这种现象发生在大多数流行的预测误差估计中,包括数据拆分,自举和锦葵的CP。接下来,从交叉验证得出的预测误差的标准置信区间可能的覆盖范围远低于所需水平。由于每个数据点都用于训练和测试,因此每个折叠的测量精度之间存在相关性,因此方差的通常估计值太小。我们引入了嵌套的交叉验证方案,以更准确地估计该方差,并从经验上表明,在传统的交叉验证间隔失败的许多示例中,这种修改导致间隔大致正确覆盖。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
离散数据丰富,并且通常作为计数或圆形数据而出现。甚至对于线性回归模型,缀合格前沿和闭合形式的后部通常是不可用的,这需要近似诸如MCMC的后部推理。对于广泛的计数和圆形数据回归模型,我们介绍了能够闭合后部推理的共轭前沿。密钥后和预测功能可通过直接蒙特卡罗模拟来计算。至关重要的是,预测分布是离散的,以匹配数据的支持,并且可以在多个协变量中进行共同评估或模拟。这些工具广泛用途是线性回归,非线性模型,通过基础扩展,以及模型和变量选择。多种仿真研究表明计算,预测性建模和相对于现有替代方案的选择性的显着优势。
translated by 谷歌翻译