我们提出了一种使用边缘似然的分布式贝叶斯模型选择的一般方法,其中数据集被分开在非重叠子集中。这些子集仅由个别工人本地访问,工人之间没有共享数据。我们近似通过在每个子集的每个子集上从后部采样通过Monte Carlo采样的完整数据的模型证据。结果使用一种新的方法来组合,该方法校正使用所产生的样本的汇总统计分裂。我们的鸿沟和征服方法使贝叶斯模型在大型数据设置中选择,利用所有可用信息,而是限制工人之间的沟通。我们派生了理论误差界限,这些错误界限量化了计算增益与精度损失之间的结果。当我们的真实世界实验所示,令人尴尬的平行性质在大规模数据集时产生了重要的速度。此外,我们展示了如何在可逆跳转设置中扩展建议的方法以在可逆跳转设置中进行模型选择,该跳转设置在一个运行中探讨多个特征组合。
translated by 谷歌翻译
回归模型用于各种应用,为来自不同领域的研究人员提供强大的科学工具。线性或简单的参数,模型通常不足以描述输入变量与响应之间的复杂关系。通过诸如神经网络的灵活方法可以更好地描述这种关系,但这导致不太可解释的模型和潜在的过度装备。或者,可以使用特定的参数非线性函数,但是这种功能的规范通常是复杂的。在本文中,我们介绍了一种灵活的施工方法,高度灵活的非线性参数回归模型。非线性特征是分层的,类似于深度学习,但对要考虑的可能类型的功能具有额外的灵活性。这种灵活性,与变量选择相结合,使我们能够找到一小部分重要特征,从而可以更具可解释的模型。在可能的功能的空间内,考虑了贝叶斯方法,基于它们的复杂性引入功能的前沿。采用遗传修改模式跳跃马尔可夫链蒙特卡罗算法来执行贝叶斯推理和估计模型平均的后验概率。在各种应用中,我们说明了我们的方法如何用于获得有意义的非线性模型。此外,我们将其预测性能与多个机器学习算法进行比较。
translated by 谷歌翻译
无似然方法是对可以模拟的隐式模型执行推断的必不可少的工具,但相应的可能性是棘手的。但是,常见的无可能方法不能很好地扩展到大量模型参数。一种有前途的无可能推理的有前途的方法涉及通过仅根据据信为低维成分提供信息的摘要统计数据来估计低维边缘后期,然后在某种程度上结合了低维近似值。在本文中,我们证明,对于看似直观的汇总统计选择,这种低维近似值在实践中可能是差的。我们描述了一个理想化的低维汇总统计量,原则上适用于边际估计。但是,在实践中很难直接近似理想的选择。因此,我们提出了一种替代的边际估计方法,该方法更容易实施和自动化。考虑到初始选择的低维摘要统计量可能仅对边缘后验位置有用,新方法通过使用所有摘要统计数据来确保全局可识别性来提高性能,从而提高性能使用低维摘要统计量进行精确的低维近似。我们表明,该方法的后部可以分别基于低维和完整的摘要统计数据将其表示为后验分布的对数库。在几个示例中说明了我们方法的良好性能。
translated by 谷歌翻译
剩下的交叉验证(LOO-CV)是一种估计样本外预测准确性的流行方法。但是,由于需要多次拟合模型,因此计算LOO-CV标准在计算上可能很昂贵。在贝叶斯的情况下,重要性采样提供了一种可能的解决方案,但是经典方法可以轻松地产生差异是无限的估计器,从而使它们可能不可靠。在这里,我们提出和分析一种新型混合估计量来计算贝叶斯Loo-CV标准。我们的方法保留了经典方法的简单性和计算便利性,同时保证了所得估计器的有限差异。提供了理论和数值结果,以说明提高的鲁棒性和效率。在高维问题中,计算益处尤为重要,可以为更广泛的模型执行贝叶斯loo-CV。所提出的方法可以在标准概率编程软件中很容易实现,并且计算成本大致相当于拟合原始模型一次。
translated by 谷歌翻译
在使用多模式贝叶斯后部分布时,马尔可夫链蒙特卡罗(MCMC)算法难以在模式之间移动,并且默认变分或基于模式的近似推动将低估后不确定性。并且,即使找到最重要的模式,难以评估后部的相对重量。在这里,我们提出了一种使用MCMC,变分或基于模式的模式的并行运行的方法,以便尽可能多地击中多种模式或分离的区域,然后使用贝叶斯堆叠来组合这些用于构建分布的加权平均值的可扩展方法。通过堆叠从多模式后分布的堆叠,最小化交叉验证预测误差的结果,并且代表了比变分推断更好的不确定度,但它不一定是相当于渐近的,以完全贝叶斯推断。我们呈现理论一致性,其中堆叠推断逼近来自未衰退的模型和非混合采样器的真实数据生成过程,预测性能优于完全贝叶斯推断,因此可以被视为祝福而不是模型拼写下的诅咒。我们展示了几个模型家庭的实际实施:潜在的Dirichlet分配,高斯过程回归,分层回归,马蹄素变量选择和神经网络。
translated by 谷歌翻译
这是模型选择和假设检测的边缘似然计算的最新介绍和概述。计算概率模型(或常量比率)的常规规定常数是许多统计数据,应用数学,信号处理和机器学习中的许多应用中的基本问题。本文提供了对主题的全面研究。我们突出了不同技术之间的局限性,优势,连接和差异。还描述了使用不正确的前沿的问题和可能的解决方案。通过理论比较和数值实验比较一些最相关的方法。
translated by 谷歌翻译
重要的加权是调整蒙特卡洛集成以说明错误分布中抽取的一种一般方法,但是当重要性比的右尾巴较重时,最终的估计值可能是高度可变的。当目标分布的某些方面无法通过近似分布捕获,在这种情况下,可以通过修改极端重要性比率来获得更稳定的估计。我们提出了一种新的方法,该方法使用拟合模拟重要性比率的上尾的广义帕累托分布来稳定重要性权重。该方法在经验上的性能要比现有方法稳定重要性采样估计值更好,包括稳定的有效样本量估计,蒙特卡洛误差估计和收敛诊断。提出的帕累托$ \ hat {k} $有限样本收敛率诊断对任何蒙特卡洛估计器都有用。
translated by 谷歌翻译
蒙特卡洛算法的划分策略是使贝叶斯推断可扩展到大数据集的越来越流行的方法。以其最简单的形式,数据分配在多个计算核心和每个核心上的单独的马尔可夫链蒙特卡洛算法上,我们将相关的部分后验分布(我们称为子形象),这是后验,仅给定后验,只有来自的数据。与该核心关联的分区段。划分和诱导技术减少了计算,内存和磁盘瓶颈,但很难重组后方样品。我们提出了瑞士人:具有通货膨胀,缩放和转移的子派员;一种新的方法,用于重新组合易于应用的次级样品,缩放到高维参数空间,并通过亚物质样品的仿射转换准确地近似原始的后验分布。我们证明,我们的转换在一系列自然的仿射转换中是渐近的最佳选择,并说明了瑞士对合成和现实世界数据集的竞争算法的功效。
translated by 谷歌翻译
贝叶斯变量选择是用于数据分析的强大工具,因为它为可变选择提供了原则性的方法,该方法可以说明事先信息和不确定性。但是,贝叶斯变量选择的广泛采用受到计算挑战的阻碍,尤其是在具有大量协变量P或非偶联的可能性的困难政权中。为了扩展到大型P制度,我们引入了一种有效的MCMC方案,其每次迭代的成本在P中是均等的。此外,我们还显示了如何将该方案扩展到用于计数数据的广义线性模型,这些模型在生物学,生态学,经济学,经济学,经济学,经济学,经济学,经济学,经济学上很普遍超越。特别是,我们设计有效的算法,用于二项式和负二项式回归中的可变选择,其中包括逻辑回归作为一种特殊情况。在实验中,我们证明了方法的有效性,包括对癌症和玉米基因组数据。
translated by 谷歌翻译
潜在位置网络模型是网络科学的多功能工具;应用程序包括集群实体,控制因果混淆,并在未观察的图形上定义前提。估计每个节点的潜在位置通常是贝叶斯推理问题的群体,吉布斯内的大都市是最流行的近似后分布的工具。然而,众所周知,GIBBS内的大都市对于大型网络而言是低效;接受比计算成本昂贵,并且所得到的后绘高度相关。在本文中,我们提出了一个替代的马尔可夫链蒙特卡罗战略 - 使用分裂哈密顿蒙特卡罗和萤火虫蒙特卡罗的组合定义 - 利用后部分布的功能形式进行更有效的后退计算。我们展示了这些战略在吉布斯和综合网络上的其他算法中优于大都市,以及学区的教师和工作人员的真正信息共享网络。
translated by 谷歌翻译
对复杂模型执行精确的贝叶斯推理是计算的难治性的。马尔可夫链蒙特卡罗(MCMC)算法可以提供后部分布的可靠近似,但对于大型数据集和高维模型昂贵。减轻这种复杂性的标准方法包括使用子采样技术或在群集中分发数据。然而,这些方法通常在高维方案中不可靠。我们在此处专注于最近的替代类别的MCMC方案,利用类似于乘客(ADMM)优化算法的庆祝交替方向使用的分裂策略。这些方法似乎提供了凭经验最先进的性能,但其高维层的理论行为目前未知。在本文中,我们提出了一个详细的理论研究,该算法之一称为分裂Gibbs采样器。在规律条件下,我们使用RICCI曲率和耦合思路为此方案建立了明确的收敛速率。我们以数字插图支持我们的理论。
translated by 谷歌翻译
我们引入了一种新的经验贝叶斯方法,用于大规模多线性回归。我们的方法结合了两个关键思想:(i)使用灵活的“自适应收缩”先验,该先验近似于正常分布的有限混合物,近似于正常分布的非参数家族; (ii)使用变分近似来有效估计先前的超参数并计算近似后期。将这两个想法结合起来,将快速,灵活的方法与计算速度相当,可与快速惩罚的回归方法(例如Lasso)相当,并在各种场景中具有出色的预测准确性。此外,我们表明,我们方法中的后验平均值可以解释为解决惩罚性回归问题,并通过直接解决优化问题(而不是通过交叉验证来调整)从数据中学到的惩罚函数的精确形式。 。我们的方法是在r https://github.com/stephenslab/mr.ash.ash.alpha的r软件包中实现的
translated by 谷歌翻译
One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this paper, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find the member of that family which is close to the target. Closeness is measured by Kullback-Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data. We discuss modern research in VI and highlight important open problems. VI is powerful, but it is not yet well understood. Our hope in writing this paper is to catalyze statistical research on this class of algorithms.
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
离散数据丰富,并且通常作为计数或圆形数据而出现。甚至对于线性回归模型,缀合格前沿和闭合形式的后部通常是不可用的,这需要近似诸如MCMC的后部推理。对于广泛的计数和圆形数据回归模型,我们介绍了能够闭合后部推理的共轭前沿。密钥后和预测功能可通过直接蒙特卡罗模拟来计算。至关重要的是,预测分布是离散的,以匹配数据的支持,并且可以在多个协变量中进行共同评估或模拟。这些工具广泛用途是线性回归,非线性模型,通过基础扩展,以及模型和变量选择。多种仿真研究表明计算,预测性建模和相对于现有替代方案的选择性的显着优势。
translated by 谷歌翻译
尖峰和单杆先验由于其可解释性和有利的统计特性,通常用于贝叶斯变量选择。但是,当变量数量较大时,现有的尖峰和锯齿状后侧面的采样器会产生过度的计算成本。在本文中,我们提出了可伸缩的尖峰和剪裁($ s^3 $),这是用于高维贝叶斯回归的可伸缩吉布斯采样实现,并具有乔治和麦卡洛克(George and McCulloch)的连续​​尖峰和剪辑(1993)。对于具有$ n $观测值和$ p $ cOVARIATES的数据集,$ s^3 $具有订单$ \ max \ {n^2 p_t,np \} $计算成本$ t $,其中$ p_t $永远不超过数量Markov链的迭代$ t $和$ t-1 $之间的协变量切换尖峰和单杆状态。这可以改善最先进实施的$ n^2 p $每题费,因为通常,$ p_t $大大小于$ p $。我们将$ S^3 $应用于合成和现实世界数据集上,证明了现有精确采样器的数量级加速顺序,并且比相当成本的近似采样器相比,推断质量的显着增长。
translated by 谷歌翻译
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be highly challenging, since the corresponding likelihood function is often intractable, and model simulation may be computationally burdensome or infeasible. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to base Bayesian inference directly on the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimising a transform of the approximate posterior that minimises a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.
translated by 谷歌翻译
We develop an optimization algorithm suitable for Bayesian learning in complex models. Our approach relies on natural gradient updates within a general black-box framework for efficient training with limited model-specific derivations. It applies within the class of exponential-family variational posterior distributions, for which we extensively discuss the Gaussian case for which the updates have a rather simple form. Our Quasi Black-box Variational Inference (QBVI) framework is readily applicable to a wide class of Bayesian inference problems and is of simple implementation as the updates of the variational posterior do not involve gradients with respect to the model parameters, nor the prescription of the Fisher information matrix. We develop QBVI under different hypotheses for the posterior covariance matrix, discuss details about its robust and feasible implementation, and provide a number of real-world applications to demonstrate its effectiveness.
translated by 谷歌翻译
The horseshoe prior is known to possess many desirable properties for Bayesian estimation of sparse parameter vectors, yet its density function lacks an analytic form. As such, it is challenging to find a closed-form solution for the posterior mode. Conventional horseshoe estimators use the posterior mean to estimate the parameters, but these estimates are not sparse. We propose a novel expectation-maximisation (EM) procedure for computing the MAP estimates of the parameters in the case of the standard linear model. A particular strength of our approach is that the M-step depends only on the form of the prior and it is independent of the form of the likelihood. We introduce several simple modifications of this EM procedure that allow for straightforward extension to generalised linear models. In experiments performed on simulated and real data, our approach performs comparable, or superior to, state-of-the-art sparse estimation methods in terms of statistical performance and computational cost.
translated by 谷歌翻译
神经网络最近显示出对无似然推理的希望,从而为经典方法提供了魔力的速度。但是,当从独立重复估计参数时,当前的实现是次优的。在本文中,我们使用决策理论框架来争辩说,如果这些模型的模拟很简单,则理想地放置了置换不变的神经网络,可用于为任意模型构造贝叶斯估计器。我们说明了这些估计量在传统空间模型以及高度参数化的空间发射模型上的潜力,并表明它们在其网络设计中不适当地说明复制的神经估计量相当大。同时,它们比基于传统可能性的估计量具有很高的竞争力和更快的速度。我们将估计量应用于红海中海面温度的空间分析,在训练之后,我们获得参数估计值,并通过引导采样对估计值进行不确定性定量,从一秒钟的数百个空间场中获取。
translated by 谷歌翻译