Through their transfer learning abilities, highly-parameterized large pre-trained language models have dominated the NLP landscape for a multitude of downstream language tasks. Though linguistically proficient, the inability of these models to incorporate the learning of non-linguistic entities (numerals and arithmetic reasoning) limits their usage for tasks that require numeric comprehension or strict mathematical reasoning. However, as we illustrate in this paper, building a general purpose language model that also happens to be proficient in mathematical reasoning is not as straight-forward as training it on a numeric dataset. In this work, we develop a novel framework that enables language models to be mathematically proficient while retaining their linguistic prowess. Specifically, we offer information-theoretic interventions to overcome the catastrophic forgetting of linguistic skills that occurs while injecting non-linguistic skills into language models.
translated by 谷歌翻译
空间优化问题(SOP)的特征是管理决策变量,目标和/或约束功能的空间关系。在本文中,我们关注一种称为空间分区的特定类型的SOP,这是一个组合问题,这是由于存在离散空间单元。精确的优化方法不会随着问题的大小而扩展,尤其是在可行的时间限制内。这促使我们开发基于人群的元启发式学来解决此类SOP。但是,这些基于人群的方法采用的搜索操作员主要是为实参与者连续优化问题而设计的。为了使这些方法适应SOP,我们将域知识应用于设计空间感知的搜索操作员,以在保留空间约束的同时有效地通过离散搜索空间进行有效搜索。为此,我们提出了一种简单而有效的算法,称为基于群的空间模因算法(空间),并在学校(RE)区域问题上进行测试。对现实世界数据集进行了详细的实验研究,以评估空间的性能。此外,进行消融研究以了解空间各个组成部分的作用。此外,我们讨论空间〜如何在现实生活计划过程及其对不同方案的适用性并激发未来的研究方向有帮助。
translated by 谷歌翻译
用木材制成的木材和森林产品,例如家具,是宝贵的商品,就像许多高估的自然资源的全球贸易一样,面临腐败,欺诈和非法收获的挑战。木材和森林产品部门的这些灰色和黑色市场活动不仅限于收获木材的国家,而是在整个全球供应链中扩展,并与非法金融流有关,例如基于贸易的洗钱,记录欺诈,种类标签和其他非法活动。在没有地面真理的情况下,使用贸易数据找到此类欺诈活动的任务可以作为无监督的异常检测问题进行建模。但是,现有的方法在其对大规模贸易数据的适用性方面存在某些缺点。贸易数据是异质的,具有表格格式的分类和数值属性。总体挑战在于数据的复杂性,数量和速度,具有大量实体和缺乏地面真相标签。为了减轻这些方法,我们提出了一种新型的无监督异常检测 - 基于对比度学习的异质异常检测(CHAD),通常适用于大规模的异质表格数据。我们证明,我们的模型CHAD对公共基准数据集的多个可比较基线表现出色,并且在贸易数据的情况下优于它们。更重要的是,我们证明我们的方法减少了假设和努力所需的高参数调整,这在无监督的培训范式中是一个关键的挑战。具体而言,我们的总体目标涉及使用提单贸易记录数据账单来检测可疑的木材运输和模式。在运输记录中检测异常交易可以使政府机构和供应链成分进一步调查。
translated by 谷歌翻译
在过去十年中引发了自然语言处理(NLP)研究的神经繁荣,同样导致了数据之间的大量创新(DTG)。这项调查提供了对神经DTG范式的合并视图,对方法,基准数据集和评估协议进行了结构化检查。这项调查划出了将DTG与其余自然语言产生(NLG)景观分开的边界,涵盖了文献的最新综合,并突出了更大的NLG伞内外的技术采用阶段。通过这种整体观点,我们重点介绍了DTG研究的有希望的途径,不仅关注具有语言能力的系统的设计,而且还集中在表现出公平和问责制的系统上。
translated by 谷歌翻译
了解全文学术文章的关键见解至关重要,因为它使我们能够确定有趣的趋势,洞悉研究和发展,并构建知识图。但是,只有在考虑全文时才可用一些有趣的关键见解。尽管研究人员在简短文档中的信息提取方面取得了重大进展,但从全文学术文献中提取科学实体仍然是一个具有挑战性的问题。这项工作提出了一种称为ENEREX的自动端对端研究实体提取器,用于提取技术集,客观任务,全文学术学术研究文章等技术方面。此外,我们提取了三个新颖的方面,例如源代码,计算资源,编程语言/库中的链接。我们演示了Enerex如何从计算机科学领域的大规模数据集中提取关键见解和趋势。我们进一步测试了多个数据集上的管道,发现ENEREX在最新模型的状态下进行了改进。我们强调了现有数据集的能力如何受到限制,以及enerex如何适应现有知识图。我们还向未来研究的指针进行了详细的讨论。我们的代码和数据可在https://github.com/discoveryanalyticscenter/enerex上公开获取。
translated by 谷歌翻译
已经探索了监督机器学习模型的算法追索问题的问题,以提供决策支持系统中更容易解释,透明和健壮的结果。未开发的区域是用于异常检测的算法求程,特别是仅具有离散特征值的表格数据。这里的问题是提出一组反事实,通过潜在的异常检测模型被认为是正常的,以便应用程序可以将此信息用于解释目的或推荐对策。我们提出了一种方法 - 在表格数据(CARAT)中保留异常算法的背景,该方法是有效,可扩展性且不可知的,对基础异常检测模型。 Carat使用基于变压器的编码器模型来通过查找可能性低的特征来解释异常。随后使用异常实例中特征的整体上下文来修改突出显示的功能,从而生成语义相干的反事实。广泛的实验有助于证明克拉的功效。
translated by 谷歌翻译
最近,越来越多的研究人员,尤其是在政治重新划分领域的研究人员,提出了基于抽样的技术,以从各个地区计划的广阔空间中制定一部分计划。这些技术已被美国法院和独立委员会越来越多地采用,作为确定游击队的工具。在这些最近的发展的促进下,我们开发了一系列基于翻转建议的学校边界的类似抽样技术。请注意,此处的翻转提案是指单个任务的区域计划的更改。这些基于抽样的技术具有双重目的。它们可以用作基线,用于比较基于本地搜索的重新划分算法。此外,这些技术可以帮助推断出可以进一步用于开发有效重新分配方法的问题特征。关于学校重新划分问题,我们从经验上谈到了这两个方面。
translated by 谷歌翻译
建模传染病传播的时空性质可以提供有用的直觉,以了解疾病传播的时变方面,并且在人们的行动模式中观察到的潜在的复杂空间依赖性。此外,可以利用县级多相关时间序列信息,以便在单个时间序列进行预测。添加到这一挑战是实时数据常常偏离单向高斯分布假设,并且可以显示一些复杂的混合模式。由此激励,我们开发了一种基于深度学习的时间序列模型,用于自动回归混合密度动态扩散网络(ARM3DNet)的概率预测,其认为人们的移动性和疾病在动态定向图上传播。实现高斯混合模型层以考虑从多个相关时间序列学习的实时数据的多模式性质。我们展示了我们的模型,当由于动态协变量特征和混合成分的最佳组合培训时,可以超越传统的统计和深度学习模式,以预测美国县级的Covid-19死亡和案例的数量。
translated by 谷歌翻译
Covid-19的传播引发了针对亚洲社区的社交媒体的种族主义和仇恨。然而,关于种族仇恨在大流行期间的差异和柜台垂直在减轻这种蔓延的角色时,很少见过。在这项工作中,我们研究了通过推特镜头的反亚洲仇恨演讲的演变和传播。我们创建了Covid-讨厌,这是一个跨越14个月的反亚洲仇恨和柜台的最大数据集,含有超过2.06亿推文,以及超过1.27亿节节点的社交网络。通过创建一个新的手工标记数据集,3,355推文,我们培训文本分类器以识别仇恨和柜台jeech推文,以实现0.832的平均宏F1得分。使用此数据集,我们对推文和用户进行纵向分析。社交网络的分析揭示了可恨和柜台的用户互相互动,彼此广泛地互动,而不是生活在孤立的极化社区中。我们发现在暴露于仇恨内容后,节点很可能变得仇恨。值得注意的是,柜台椎间目可能会阻止用户转向仇恨,可能暗示在Web和社交媒体平台上遏制讨厌的解决方案。数据和代码是在http://claws.cc.gatech.edu/covid。
translated by 谷歌翻译
Searching long egocentric videos with natural language queries (NLQ) has compelling applications in augmented reality and robotics, where a fluid index into everything that a person (agent) has seen before could augment human memory and surface relevant information on demand. However, the structured nature of the learning problem (free-form text query inputs, localized video temporal window outputs) and its needle-in-a-haystack nature makes it both technically challenging and expensive to supervise. We introduce Narrations-as-Queries (NaQ), a data augmentation strategy that transforms standard video-text narrations into training data for a video query localization model. Validating our idea on the Ego4D benchmark, we find it has tremendous impact in practice. NaQ improves multiple top models by substantial margins (even doubling their accuracy), and yields the very best results to date on the Ego4D NLQ challenge, soundly outperforming all challenge winners in the CVPR and ECCV 2022 competitions and topping the current public leaderboard. Beyond achieving the state-of-the-art for NLQ, we also demonstrate unique properties of our approach such as gains on long-tail object queries, and the ability to perform zero-shot and few-shot NLQ.
translated by 谷歌翻译