已经探索了监督机器学习模型的算法追索问题的问题,以提供决策支持系统中更容易解释,透明和健壮的结果。未开发的区域是用于异常检测的算法求程,特别是仅具有离散特征值的表格数据。这里的问题是提出一组反事实,通过潜在的异常检测模型被认为是正常的,以便应用程序可以将此信息用于解释目的或推荐对策。我们提出了一种方法 - 在表格数据(CARAT)中保留异常算法的背景,该方法是有效,可扩展性且不可知的,对基础异常检测模型。 Carat使用基于变压器的编码器模型来通过查找可能性低的特征来解释异常。随后使用异常实例中特征的整体上下文来修改突出显示的功能,从而生成语义相干的反事实。广泛的实验有助于证明克拉的功效。
translated by 谷歌翻译
用木材制成的木材和森林产品,例如家具,是宝贵的商品,就像许多高估的自然资源的全球贸易一样,面临腐败,欺诈和非法收获的挑战。木材和森林产品部门的这些灰色和黑色市场活动不仅限于收获木材的国家,而是在整个全球供应链中扩展,并与非法金融流有关,例如基于贸易的洗钱,记录欺诈,种类标签和其他非法活动。在没有地面真理的情况下,使用贸易数据找到此类欺诈活动的任务可以作为无监督的异常检测问题进行建模。但是,现有的方法在其对大规模贸易数据的适用性方面存在某些缺点。贸易数据是异质的,具有表格格式的分类和数值属性。总体挑战在于数据的复杂性,数量和速度,具有大量实体和缺乏地面真相标签。为了减轻这些方法,我们提出了一种新型的无监督异常检测 - 基于对比度学习的异质异常检测(CHAD),通常适用于大规模的异质表格数据。我们证明,我们的模型CHAD对公共基准数据集的多个可比较基线表现出色,并且在贸易数据的情况下优于它们。更重要的是,我们证明我们的方法减少了假设和努力所需的高参数调整,这在无监督的培训范式中是一个关键的挑战。具体而言,我们的总体目标涉及使用提单贸易记录数据账单来检测可疑的木材运输和模式。在运输记录中检测异常交易可以使政府机构和供应链成分进一步调查。
translated by 谷歌翻译
检测会计异常是财务报表审核中的反复挑战。最近,已经提出了源自深度学习(DL)的新方法来审核声明的基本会计记录的大量。但是,由于它们的大量参数,这种模型表现出固有不透明的缺点。同时,隐藏模型的内部运作通常会阻碍其现实世界的应用。该观察结果在财务审计中尤其如此,因为审计师必须合理地解释和证明其审计决定是合理的。如今,已经提出了各种可解释的AI(XAI)技术来应对这一挑战,例如Shapley添加说明(Shap)。但是,在经常在财务审核中应用的无监督DL中,这些方法在编码变量级别上解释了模型输出。结果,人类审计师通常很难理解自动编码器神经网络(AENNS)的解释。为了减轻此缺点,我们提出(重塑),该属性在汇总属性级别上解释了模型输出。此外,我们引入了一个评估框架,以比较XAI方法在审计中的多功能性。我们的实验结果表明,经验证据表明,与最先进的基线相比,重塑结果是多功能解释的。我们将这种属性级别的解释视为在财务审计中采用无监督的DL技术的必要下一步。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在网络安全挑战中的应用已在行业和学术界的吸引力,部分原因是对关键系统(例如云基础架构和政府机构)的广泛恶意软件攻击。入侵检测系统(IDS)使用某些形式的AI,由于能够以高预测准确性处理大量数据,因此获得了广泛的采用。这些系统托管在组织网络安全操作中心(CSOC)中,作为一种防御工具,可监视和检测恶意网络流,否则会影响机密性,完整性和可用性(CIA)。 CSOC分析师依靠这些系统来决定检测到的威胁。但是,使用深度学习(DL)技术设计的IDS通常被视为黑匣子模型,并且没有为其预测提供理由。这为CSOC分析师造成了障碍,因为他们无法根据模型的预测改善决策。解决此问题的一种解决方案是设计可解释的ID(X-IDS)。这项调查回顾了可解释的AI(XAI)的最先进的ID,目前的挑战,并讨论了这些挑战如何涉及X-ID的设计。特别是,我们全面讨论了黑匣子和白盒方法。我们还在这些方法之间的性能和产生解释的能力方面提出了权衡。此外,我们提出了一种通用体系结构,该建筑认为人类在循环中,该架构可以用作设计X-ID时的指南。研究建议是从三个关键观点提出的:需要定义ID的解释性,需要为各种利益相关者量身定制的解释以及设计指标来评估解释的需求。
translated by 谷歌翻译
可解释的AI(XAI)的最新进展增加了对各个行业中安全和可解释的AI模型部署的需求。尽管深度神经网络在各种领域取得了最新的成功,但了解这种复杂模型的决策过程对于领域专家来说仍然是一项艰巨的任务。尤其是在金融领域,仅指向通常由数百种混合类型列组成的异常,对专家的价值有限。因此,在本文中,我们提出了一个框架,用于解释使用用于混合类型表格数据的Denoisising自动编码器。我们专门将技术集中在错误的观察方面上。这是通过将潜在误差定位的单个样品柱(单元)定位并分配相应的置信度得分来实现的。此外,该模型提供了预期的单元格估计来解决错误。我们根据三个标准的公共表格数据集(信用默认,成人,IEEE欺诈)和一个专有数据集(Holdings)来评估我们的方法。我们发现,适用于此任务的Denoing自动编码器已经在细胞误差检测率和预期价值率中的其他方法都优于其他方法。此外,我们分析了设计用于细胞误差检测的专门损失如何进一步改善这些指标。我们的框架是为域专家设计的,以了解异常的异常特征,并改善内部数据质量管理流程。
translated by 谷歌翻译
对于由硬件和软件组件组成的复杂分布式系统而言,异常检测是一个重要的问题。对此类系统的异常检测的要求和挑战的透彻理解对于系统的安全性至关重要,尤其是对于现实世界的部署。尽管有许多解决问题的研究领域和应用领域,但很少有人试图对这种系统进行深入研究。大多数异常检测技术是针对某些应用域的专门开发的,而其他检测技术则更为通用。在这项调查中,我们探讨了基于图的算法在复杂分布式异质系统中识别和减轻不同类型异常的重要潜力。我们的主要重点是在分布在复杂分布式系统上的异质计算设备上应用时,可深入了解图。这项研究分析,比较和对比该领域的最新研究文章。首先,我们描述了现实世界分布式系统的特征及其在复杂网络中的异常检测的特定挑战,例如数据和评估,异常的性质以及现实世界的要求。稍后,我们讨论了为什么可以在此类系统中利用图形以及使用图的好处。然后,我们将恰当地深入研究最先进的方法,并突出它们的优势和劣势。最后,我们评估和比较这些方法,并指出可能改进的领域。
translated by 谷歌翻译
Post-hoc explanations of machine learning models are crucial for people to understand and act on algorithmic predictions. An intriguing class of explanations is through counterfactuals, hypothetical examples that show people how to obtain a different prediction. We posit that effective counterfactual explanations should satisfy two properties: feasibility of the counterfactual actions given user context and constraints, and diversity among the counterfactuals presented. To this end, we propose a framework for generating and evaluating a diverse set of counterfactual explanations based on determinantal point processes. To evaluate the actionability of counterfactuals, we provide metrics that enable comparison of counterfactual-based methods to other local explanation methods. We further address necessary tradeoffs and point to causal implications in optimizing for counterfactuals. Our experiments on four real-world datasets show that our framework can generate a set of counterfactuals that are diverse and well approximate local decision boundaries, outperforming prior approaches to generating diverse counterfactuals. We provide an implementation of the framework at https://github.com/microsoft/DiCE. CCS CONCEPTS• Applied computing → Law, social and behavioral sciences.
translated by 谷歌翻译
异构表格数据是最常用的数据形式,对于众多关键和计算要求的应用程序至关重要。在同质数据集上,深度神经网络反复显示出卓越的性能,因此被广泛采用。但是,它们适应了推理或数据生成任务的表格数据仍然具有挑战性。为了促进该领域的进一步进展,这项工作概述了表格数据的最新深度学习方法。我们将这些方法分为三组:数据转换,专业体系结构和正则化模型。对于每个小组,我们的工作提供了主要方法的全面概述。此外,我们讨论了生成表格数据的深度学习方法,并且还提供了有关解释对表格数据的深层模型的策略的概述。因此,我们的第一个贡献是解决上述领域中的主要研究流和现有方法,同时强调相关的挑战和开放研究问题。我们的第二个贡献是在传统的机器学习方法中提供经验比较,并在五个流行的现实世界中的十种深度学习方法中,具有不同规模和不同的学习目标的经验比较。我们已将作为竞争性基准公开提供的结果表明,基于梯度增强的树合奏的算法仍然大多在监督学习任务上超过了深度学习模型,这表明对表格数据的竞争性深度学习模型的研究进度停滞不前。据我们所知,这是对表格数据深度学习方法的第一个深入概述。因此,这项工作可以成为有价值的起点,以指导对使用表格数据深入学习感兴趣的研究人员和从业人员。
translated by 谷歌翻译
现代高性能计算(HPC)系统的复杂性日益增加,需要引入自动化和数据驱动的方法,以支持系统管理员为增加系统可用性的努力。异常检测是改善可用性不可或缺的一部分,因为它减轻了系统管理员的负担,并减少了异常和解决方案之间的时间。但是,对当前的最新检测方法进行了监督和半监督,因此它们需要具有异常的人体标签数据集 - 在生产HPC系统中收集通常是不切实际的。基于聚类的无监督异常检测方法,旨在减轻准确的异常数据的需求,到目前为止的性能差。在这项工作中,我们通过提出RUAD来克服这些局限性,RUAD是一种新型的无监督异常检测模型。 Ruad比当前的半监督和无监督的SOA方法取得了更好的结果。这是通过考虑数据中的时间依赖性以及在模型体系结构中包括长短期限内存单元的实现。提出的方法是根据tier-0系统(带有980个节点的Cineca的Marconi100的完整历史)评估的。 RUAD在半监督训练中达到曲线(AUC)下的区域(AUC)为0.763,在无监督的训练中达到了0.767的AUC,这改进了SOA方法,在半监督训练中达到0.747的AUC,无需训练的AUC和0.734的AUC在无处不在的AUC中提高了AUC。训练。它还大大优于基于聚类的当前SOA无监督的异常检测方法,其AUC为0.548。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
我们提出了一种新颖的生成方法,用于根据表征剂的行为的结果变量来生成强化学习(RL)剂的看不见和合理的反事实示例。我们的方法使用变异自动编码器来训练潜在空间,该空间共同编码与代理商行为有关的观测和结果变量的信息。反事实是使用该潜在空间中的遍历生成的,通过梯度驱动的更新以及对从示例池中抽出的情况进行的潜在插值生成。其中包括提高生成示例的可能性的更新,从而提高了产生的反事实的合理性。从三个RL环境中的实验中,我们表明这些方法产生的反事实是与纯粹的结果驱动或基于病例的基准相比,它们更合理且与其查询更接近。最后,我们表明,经过联合训练的潜在训练,可以重建输入观察结果和行为结果变量,从而在训练有素的潜在现象中产生更高质量的反事实,仅重建了观察输入。
translated by 谷歌翻译
自动日志文件分析可以尽早发现相关事件,例如系统故障。特别是,自我学习的异常检测技术在日志数据中捕获模式,随后向系统操作员报告意外的日志事件事件,而无需提前提供或手动对异常情况进行建模。最近,已经提出了越来越多的方法来利用深度学习神经网络为此目的。与传统的机器学习技术相比,这些方法证明了出色的检测性能,并同时解决了不稳定数据格式的问题。但是,有许多不同的深度学习体系结构,并且编码由神经网络分析的原始和非结构化日志数据是不平凡的。因此,我们进行了系统的文献综述,概述了部署的模型,数据预处理机制,异常检测技术和评估。该调查没有定量比较现有方法,而是旨在帮助读者了解不同模型体系结构的相关方面,并强调未来工作的开放问题。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
本次调查绘制了用于分析社交媒体数据的生成方法的研究状态的广泛的全景照片(Sota)。它填补了空白,因为现有的调查文章在其范围内或被约会。我们包括两个重要方面,目前正在挖掘和建模社交媒体的重要性:动态和网络。社会动态对于了解影响影响或疾病的传播,友谊的形成,友谊的形成等,另一方面,可以捕获各种复杂关系,提供额外的洞察力和识别否则将不会被注意的重要模式。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
As many deep anomaly detection models have been deployed in the real-world, interpretable anomaly detection becomes an emerging task. Recent studies focus on identifying features of samples leading to abnormal outcomes but cannot recommend a set of actions to flip the abnormal outcomes. In this work, we focus on interpretations via algorithmic recourse that shows how to act to revert abnormal predictions by suggesting actions on features. The key challenge is that algorithmic recourse involves interventions in the physical world, which is fundamentally a causal problem. To tackle this challenge, we propose an interpretable Anomaly Detection framework using Causal Algorithmic Recourse (ADCAR), which recommends recourse actions and infers counterfactual of abnormal samples guided by the causal mechanism. Experiments on three datasets show that ADCAR can flip the abnormal labels with minimal interventions.
translated by 谷歌翻译
异常检测领域中的大多数建议仅集中在检测阶段,特别是在最近的深度学习方法上。在提供高度准确的预测的同时,这些模型通常缺乏透明度,充当“黑匣子”。这种批评已经越来越多,即解释在可接受性和可靠性方面被认为非常相关。在本文中,我们通过检查ADMNC(混合数值和分类空间的异常检测)模型来解决此问题,这是一种现有的非常准确的,尽管不透明的异常检测器能够使用数值和分类输入进行操作。这项工作介绍了扩展EADMNC(在混合数值和分类空间上可解释的异常检测),这为原始模型获得的预测提供了解释性。通过Apache Spark Framework,我们保留了原始方法的可伸缩性。 EADMNC利用了先前的ADMNC模型的配方,以提供事前和事后解释性,同时保持原始体系结构的准确性。我们提出了一个事前模型,该模型在全球范围内通过将输入数据分割为均质组,仅使用少数变量来解释输出。我们设计了基于回归树的图形表示,主管可以检查以了解正常数据和异常数据之间的差异。我们的事后解释由基于文本的模板方法组成,该方法在本地提供了支持每个检测的文本参数。我们报告了广泛的现实数据,特别是在网络入侵检测领域的实验结果。使用网络入侵域中的专家知识来评估解释的有用性。
translated by 谷歌翻译
Deep Learning and Machine Learning based models have become extremely popular in text processing and information retrieval. However, the non-linear structures present inside the networks make these models largely inscrutable. A significant body of research has focused on increasing the transparency of these models. This article provides a broad overview of research on the explainability and interpretability of natural language processing and information retrieval methods. More specifically, we survey approaches that have been applied to explain word embeddings, sequence modeling, attention modules, transformers, BERT, and document ranking. The concluding section suggests some possible directions for future research on this topic.
translated by 谷歌翻译