我们提出了一种新颖的生成方法,用于根据表征剂的行为的结果变量来生成强化学习(RL)剂的看不见和合理的反事实示例。我们的方法使用变异自动编码器来训练潜在空间,该空间共同编码与代理商行为有关的观测和结果变量的信息。反事实是使用该潜在空间中的遍历生成的,通过梯度驱动的更新以及对从示例池中抽出的情况进行的潜在插值生成。其中包括提高生成示例的可能性的更新,从而提高了产生的反事实的合理性。从三个RL环境中的实验中,我们表明这些方法产生的反事实是与纯粹的结果驱动或基于病例的基准相比,它们更合理且与其查询更接近。最后,我们表明,经过联合训练的潜在训练,可以重建输入观察结果和行为结果变量,从而在训练有素的潜在现象中产生更高质量的反事实,仅重建了观察输入。
translated by 谷歌翻译
反事实说明代表了对数据样本的最小变化,其改变其预测分类,通常是从不利的初始类到所需的目标类别。反事实可以帮助回答问题,例如“需要更改此申请以获得贷款的需要?”。一些最近提出的反事实的方法涉及“合理的”反事实和方法的不同定义。然而,许多这些方法是计算密集的,并提供不符合的解释。在这里,我们介绍了锐利的程序,这是一个用于通过创建分类为目标类的输入的投影版本来启动的二进制分类方法。然后在输入及其投影之间的插值线上的潜在空间中生成反事实候选者。然后,我们展示了我们的框架通过使用学习的陈述将样本的核心特征转化为其反事实。此外,我们表明Strappooter在表格和图像数据集上跨越普通质量指标具有竞争力,同时在现实主义测量中的两个可比方法和擅长的级别,使其适用于需要及时解释的高速机器学习应用。
translated by 谷歌翻译
鉴于部署更可靠的机器学习系统的重要性,研究界内的机器学习模型的解释性得到了相当大的关注。在计算机视觉应用中,生成反事实方法表示如何扰乱模型的输入来改变其预测,提供有关模型决策的详细信息。目前的方法倾向于产生关于模型决策的琐碎的反事实,因为它们通常建议夸大或消除所分类的属性的存在。对于机器学习从业者,这些类型的反事件提供了很少的价值,因为它们没有提供有关不期望的模型或数据偏差的新信息。在这项工作中,我们确定了琐碎的反事实生成问题,我们建议潜水以缓解它。潜水在使用多样性强制损失限制的解除印章潜在空间中学习扰动,以发现关于模型预测的多个有价值的解释。此外,我们介绍一种机制,以防止模型产生微不足道的解释。 Celeba和Synbols的实验表明,与先前的最先进的方法相比,我们的模型提高了生产高质量有价值解释的成功率。代码可在https://github.com/elementai/beyond- trial-explanations获得。
translated by 谷歌翻译
Counterfactual explanation is a common class of methods to make local explanations of machine learning decisions. For a given instance, these methods aim to find the smallest modification of feature values that changes the predicted decision made by a machine learning model. One of the challenges of counterfactual explanation is the efficient generation of realistic counterfactuals. To address this challenge, we propose VCNet-Variational Counter Net-a model architecture that combines a predictor and a counterfactual generator that are jointly trained, for regression or classification tasks. VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem. Our contribution is the generation of counterfactuals that are close to the distribution of the predicted class. This is done by learning a variational autoencoder conditionally to the output of the predictor in a join-training fashion. We present an empirical evaluation on tabular datasets and across several interpretability metrics. The results are competitive with the state-of-the-art method.
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
当图像分类器输出错误的类标签时,可以有助于查看图像中的更改会导致正确的分类。这是产生反事实解释的算法。但是,没有易于可扩展的方法来产生这种反应性。我们开发了一种新的算法,为以低计算成本训练的大图像分类器提供了反事实解释。我们经验与文献中的基线进行了对该算法的比较;我们的小说算法一致地找到了更接近原始输入的反事实。与此同时,这些反事实的现实主义与基线相当。所有实验的代码都可以在https://github.com/benedikthoeltgen/deduce提供。
translated by 谷歌翻译
已经探索了监督机器学习模型的算法追索问题的问题,以提供决策支持系统中更容易解释,透明和健壮的结果。未开发的区域是用于异常检测的算法求程,特别是仅具有离散特征值的表格数据。这里的问题是提出一组反事实,通过潜在的异常检测模型被认为是正常的,以便应用程序可以将此信息用于解释目的或推荐对策。我们提出了一种方法 - 在表格数据(CARAT)中保留异常算法的背景,该方法是有效,可扩展性且不可知的,对基础异常检测模型。 Carat使用基于变压器的编码器模型来通过查找可能性低的特征来解释异常。随后使用异常实例中特征的整体上下文来修改突出显示的功能,从而生成语义相干的反事实。广泛的实验有助于证明克拉的功效。
translated by 谷歌翻译
Counterfactual explanations have emerged as a popular solution for the eXplainable AI (XAI) problem of elucidating the predictions of black-box deep-learning systems due to their psychological validity, flexibility across problem domains and proposed legal compliance. While over 100 counterfactual methods exist, claiming to generate plausible explanations akin to those preferred by people, few have actually been tested on users ($\sim7\%$). So, the psychological validity of these counterfactual algorithms for effective XAI for image data is not established. This issue is addressed here using a novel methodology that (i) gathers ground truth human-generated counterfactual explanations for misclassified images, in two user studies and, then, (ii) compares these human-generated ground-truth explanations to computationally-generated explanations for the same misclassifications. Results indicate that humans do not "minimally edit" images when generating counterfactual explanations. Instead, they make larger, "meaningful" edits that better approximate prototypes in the counterfactual class.
translated by 谷歌翻译
尽管它们的准确性很高,但由于未知的决策过程和潜在的偏见,现代复杂的图像分类器不能被敏感任务受到信任。反事实解释非常有效地为这些黑盒算法提供透明度。然而,生成可能对分类器输出产生一致影响并揭示可解释的特征更改的反事实是一项非常具有挑战性的任务。我们介绍了一种新颖的方法,可以使用验证的生成模型为图像分类器生成因果关系但可解释的反事实解释,而无需进行任何重新训练或调节。该技术中的生成模型不可能在与目标分类器相同的数据上进行训练。我们使用此框架来获得对比度和因果关系,并作为黑盒分类器的全球解释。在面部属性分类的任务上,我们通过提供因果和对比特征属性以及相应的反事实图像来展示不同属性如何影响分类器输出。
translated by 谷歌翻译
反事实可以以人类的可解释方式解释神经网络的分类决策。我们提出了一种简单但有效的方法来产生这种反事实。更具体地说,我们执行合适的差异坐标转换,然后在这些坐标中执行梯度上升,以查找反事实,这些反事实是由置信度良好的指定目标类别分类的。我们提出了两种方法来利用生成模型来构建完全或大约差异的合适坐标系。我们使用Riemannian差异几何形状分析了生成过程,并使用各种定性和定量测量方法验证了生成的反事实质量。
translated by 谷歌翻译
对机器学习和创造力领域的兴趣越来越大。这项调查概述了计算创造力理论,关键机器学习技术(包括生成深度学习)和相应的自动评估方法的历史和现状。在对该领域的主要贡献进行了批判性讨论之后,我们概述了当前的研究挑战和该领域的新兴机会。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
与CNN的分类,分割或对象检测相比,生成网络的目标和方法根本不同。最初,它们不是作为图像分析工具,而是生成自然看起来的图像。已经提出了对抗性训练范式来稳定生成方法,并已被证明是非常成功的 - 尽管绝不是第一次尝试。本章对生成对抗网络(GAN)的动机进行了基本介绍,并通​​过抽象基本任务和工作机制并得出了早期实用方法的困难来追溯其成功的道路。将显示进行更稳定的训练方法,也将显示出不良收敛及其原因的典型迹象。尽管本章侧重于用于图像生成和图像分析的gan,但对抗性训练范式本身并非特定于图像,并且在图像分析中也概括了任务。在将GAN与最近进入场景的进一步生成建模方法进行对比之前,将闻名图像语义分割和异常检测的架构示例。这将允许对限制的上下文化观点,但也可以对gans有好处。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
这项调查回顾了对基于视觉的自动驾驶系统进行行为克隆训练的解释性方法。解释性的概念具有多个方面,并且需要解释性的驾驶强度是一种安全至关重要的应用。从几个研究领域收集贡献,即计算机视觉,深度学习,自动驾驶,可解释的AI(X-AI),这项调查可以解决几点。首先,它讨论了从自动驾驶系统中获得更多可解释性和解释性的定义,上下文和动机,以及该应用程序特定的挑战。其次,以事后方式为黑盒自动驾驶系统提供解释的方法是全面组织和详细的。第三,详细介绍和讨论了旨在通过设计构建更容易解释的自动驾驶系统的方法。最后,确定并检查了剩余的开放挑战和潜在的未来研究方向。
translated by 谷歌翻译
反事实示例(CFS)是将事后解释附加到机器学习(ML)模型的最流行方法之一。但是,现有的CF生成方法要么利用特定模型的内部或取决于每个样本的邻域,因此很难对复杂模型进行推广,并且对于大型数据集而言效率低下。这项工作旨在克服这些局限性并引入放松身心,这是一种模型不足的算法,旨在生成最佳的反事实解释。具体而言,我们制定了将CFS作为顺序决策任务的问题,然后通过深入加固学习(DRL)使用离散连续的混合动作空间找到最佳CFS。在几个表格数据集上进行的广泛实验表明,放松胜过现有的CF生成基线,因为它会产生更稀疏的反事实,更可扩展到复杂的目标模型以解释,并且可以概括地分类和回归任务。最后,为了证明我们方法在现实世界中的用例中的有用性,我们利用了Rase产生的CFS来建议一个国家应采取的行动,以减少COVID-19引起的死亡风险。有趣的是,我们的方法推荐的行动与许多国家实际实施的策略相对应,以对抗COVID-19-19的大流行。
translated by 谷歌翻译
强化学习中的信用作业是衡量行动对未来奖励的影响的问题。特别是,这需要从运气中分离技能,即解除外部因素和随后的行动对奖励行动的影响。为实现这一目标,我们将来自因果关系的反事件的概念调整为无模型RL设置。关键思想是通过学习从轨迹中提取相关信息来应对未来事件的价值函数。我们制定了一系列政策梯度算法,这些算法使用这些未来条件的价值函数作为基准或批评,并表明它们是可怕的差异。为避免对未来信息的调理潜在偏见,我们将后视信息限制为不包含有关代理程序行为的信息。我们展示了我们对许多说明性和具有挑战性问题的算法的功效和有效性。
translated by 谷歌翻译