需要下一代无线网络以同时满足各种服务和标准。为了解决即将到来的严格条件,开发了具有柔性设计,分解虚拟和可编程组件以及智能闭环控制等特征的新型开放式访问网络(O-RAN)。面对不断变化的情况,O-Ran切片被研究为确保网络服务质量(QoS)的关键策略。但是,必须动态控制不同的网络切片,以避免由环境快速变化引起的服务水平一致性(SLA)变化。因此,本文介绍了一个新颖的框架,能够通过智能提供的提供资源来管理网络切片。由于不同的异质环境,智能机器学习方法需要足够的探索来处理无线网络中最严厉的情况并加速收敛。为了解决这个问题,提出了一种新解决方案,基于基于进化的深度强化学习(EDRL),以加速和优化无线电访问网络(RAN)智能控制器(RIC)模块中的切片管理学习过程。为此,O-RAN切片被表示为Markov决策过程(MDP),然后最佳地解决了资源分配,以使用EDRL方法满足服务需求。在达到服务需求方面,仿真结果表明,所提出的方法的表现优于DRL基线62.2%。
translated by 谷歌翻译
为满足城市内部运输中不断增长的行动需求,已经提出了城市空运(UAM)的概念,其中垂直起飞和着陆(VTOL)飞机用于提供乘车服务。在UAM中,飞机可以在称为走廊的指定空间中运行,链接机场。 GBS和飞机之间的可靠通信网络使UAM能够充分利用空域,并创造快速,高效,安全的运输系统。在本文中,为了表征UAM的无线连接性能,提出了一种空间模型。对于该设置,导出任意选择的GBS与其相关飞机之间的距离和GBS经历的干扰的拉普拉斯变换的分布。使用这些结果,确定基于信号的连通概率(SIR)以捕获UAM飞机到地通信网络的连接性能。然后,提出了利用这些连接结果,建议使用傅里叶神经网络的无线的异步联合学习(AFL)框架来解决UAM操作期间湍流预测的具有挑战性问题。对于该AFL方案,引入了一种静止感知的全局聚合方案,以加快UAM飞机使用的最佳湍流预测模型的收敛性。仿真结果验证了UAM无线连接的理论派生。结果还表明,所提出的AFL框架会收敛于比同步联合学习基线和无期性的AFL方法更快地收敛到最佳湍流预测模型。此外,结果表征了在不同参数设置下的无线连接和飞机湍流模型的融合性能的性能,提供了有用的UAM设计指南。
translated by 谷歌翻译
协作深度加强学习(CDRL)算法,其中多个代理可以在无线网络上协调是一种有希望的方法,以便在复杂的动态环境中依赖实时决策的未来智能和自主系统。尽管如此,在实际情况下,CDRL由​​于代理的异质性及其学习任务,不同环境,学习时间限制以及无线网络的资源限制,因此CDRL面临着许多挑战。为了解决这些挑战,在本文中,提出了一种新颖的语义感知CDRL方法,以使一组异构未经训练的代理具有语义连接的DRL任务,以在资源受限无线蜂窝网络上有效地协作。为此,提出了一种新的异构联邦DRL(HFDRL)算法,以选择用于协作的语义相关DRL代理的最佳子集。然后,该方法将共同优化合作选定代理的训练损失和无线带宽分配,以便在其实时任务的时间限制内培训每个代理。仿真结果表明,与最先进的基线相比,所提出的算法的卓越性能。
translated by 谷歌翻译
提出了一个新的联邦学习(FL)框架,该框架是通过大规模无线连接启用的,用于设计连接和自动驾驶汽车(CAVS)的自动控制器。在此框架中,控制器使用的学习模型在一组骑士之间进行了协作培训。为了捕获不同的CAV参与FL训练过程以及骑士之间的多样化的本地数据质量,提出了一种新型的动态联合近端(DFP)算法,该算法提出了骑士的流动性,无线褪色渠道的流动性,以及不平衡和不平衡和不平衡的非独立和相同分布的数据跨CAV。对所提出的算法进行了严格的合并分析,以确定CAVS与最佳自主控制器的收敛速度。特别是,明确分析了不同CAV参与FL过程的影响以及不同的CAV数据质量对所提出的DFP算法收敛的影响。利用此分析,基于合同理论的激励机制旨在提高FL收敛速度。使用真实车辆数据迹线的仿真结果表明,所提出的基于DFP的控制器可以随着时间和不同的交通情况准确跟踪目标CAV速度。此外,结果表明,与流行的FL算法(例如联邦平均(FideVG)和联邦近端(FedProx))相比,提出的DFP算法的收敛性要快得多。结果还验证了合同理论激励机制的可行性,并表明所提出的机制可以将DFP算法的收敛速度提高40%,而与基准相比。
translated by 谷歌翻译
We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss, intending to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. With such an alignment, a model can identify regions of an image corresponding to a given text input, and therefore transfer seamlessly to the task of open vocabulary semantic segmentation without requiring any segmentation annotations during training. Using pre-trained CLIP encoders with PACL, we are able to set the state-of-the-art on the task of open vocabulary zero-shot segmentation on 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Furthermore, we show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy compared to CLIP, across a suite of 12 image classification datasets.
translated by 谷歌翻译
Recently, machine learning (ML) has become a popular approach to support self-adaptation. ML has been used to deal with several problems in self-adaptation, such as maintaining an up-to-date runtime model under uncertainty and scalable decision-making. Yet, exploiting ML comes with inherent challenges. In this paper, we focus on a particularly important challenge for learning-based self-adaptive systems: drift in adaptation spaces. With adaptation space we refer to the set of adaptation options a self-adaptive system can select from at a given time to adapt based on the estimated quality properties of the adaptation options. Drift of adaptation spaces originates from uncertainties, affecting the quality properties of the adaptation options. Such drift may imply that eventually no adaptation option can satisfy the initial set of the adaptation goals, deteriorating the quality of the system, or adaptation options may emerge that allow enhancing the adaptation goals. In ML, such shift corresponds to novel class appearance, a type of concept drift in target data that common ML techniques have problems dealing with. To tackle this problem, we present a novel approach to self-adaptation that enhances learning-based self-adaptive systems with a lifelong ML layer. We refer to this approach as lifelong self-adaptation. The lifelong ML layer tracks the system and its environment, associates this knowledge with the current tasks, identifies new tasks based on differences, and updates the learning models of the self-adaptive system accordingly. A human stakeholder may be involved to support the learning process and adjust the learning and goal models. We present a reusable architecture for lifelong self-adaptation and apply it to the case of drift of adaptation spaces that affects the decision-making in self-adaptation. We validate the approach for a series of scenarios using the DeltaIoT exemplar.
translated by 谷歌翻译
人类不断与日常对象互动以完成任务。为了了解这种相互作用,计算机需要从观察全身与场景的全身相互作用的相机中重建这些相互作用。由于身体和物体之间的阻塞,运动模糊,深度/比例模棱两可以及手和可抓握的物体零件的低图像分辨率,这是具有挑战性的。为了使问题可以解决,社区要么专注于互动的手,忽略身体或互动的身体,无视双手。 Grab数据集解决了灵活的全身互动,但使用基于标记的MOCAP并缺少图像,而行为则捕获了身体对象互动的视频,但缺乏手动细节。我们使用参数全身模型SMPL-X和已知的对象网格来解决一种新的方法,该方法与Intercap的先前工作局限性,该方法是一种新的方法,可重建从多视图RGB-D数据进行交互的整体和对象。为了应对上述挑战,Intercap使用了两个关键观察:(i)可以使用手和物体之间的接触来改善两者的姿势估计。 (ii)Azure Kinect传感器使我们能够建立一个简单的多视图RGB-D捕获系统,该系统在提供合理的相机间同步时最小化遮挡的效果。使用此方法,我们捕获了Intercap数据集,其中包含10个受试者(5名男性和5个女性)与10个各种尺寸和负担的物体相互作用,包括与手或脚接触。 Intercap总共有223个RGB-D视频,产生了67,357个多视图帧,每个帧包含6个RGB-D图像。我们的方法为每个视频框架提供了伪真正的身体网格和对象。我们的Intercap方法和数据集填补了文献中的重要空白,并支持许多研究方向。我们的数据和代码可用于研究目的。
translated by 谷歌翻译
本文提出了一个传感器数据匿名模型,该模型接受了分散数据的培训,并在数据实用程序和隐私之间进行了理想的权衡,即使在收集到的传感器数据具有不同的基础分布的异质环境中也是如此。我们称为Blinder的匿名模型基于以对抗性方式训练的变异自动编码器和歧视网络。我们使用模型 - 不合稳定元学习框架来调整通过联合学习训练的匿名模型,以适应每个用户的数据分布。我们在不同的设置下评估了盲人,并表明它提供了端到端的隐私保护,以增加隐私损失高达4.00%,并将数据实用程序降低高达4.24%,而最新的数据实用程序则将其降低了4.24%。对集中数据培训的匿名模型。我们的实验证实,Blinder可以一次掩盖多个私人属性,并且具有足够低的功耗和计算开销,以便将其部署在边缘设备和智能手机上,以执行传感器数据的实时匿名化。
translated by 谷歌翻译
在生物医学语料库中预先培训的语言模型,例如Biobert,最近在下游生物医学任务上显示出令人鼓舞的结果。另一方面,由于嵌入尺寸,隐藏尺寸和层数等因素,许多现有的预训练模型在资源密集型和计算上都是沉重的。自然语言处理(NLP)社区已经制定了许多策略来压缩这些模型,利用修剪,定量和知识蒸馏等技术,从而导致模型更快,更小,随后更易于使用。同样,在本文中,我们介绍了六种轻型模型,即Biodistilbert,Biotinybert,BioMobilebert,Distilbiobert,Tinybiobert和Cmpactactbiobert,并通过掩护的语言在PubMed DataSet上通过掩护数据进行了知识蒸馏而获得的知识蒸馏来获得。建模(MLM)目标。我们在三个生物医学任务上评估了所有模型,并将它们与Biobert-V1.1进行比较,以创建有效的轻量级模型,以与较大的对应物相同。所有模型将在我们的HuggingFace配置文件上公开可用,网址为https://huggingface.co/nlpie,用于运行实验的代码将在https://github.com/nlpie-research/compact-compact-biomedical-transformers上获得。
translated by 谷歌翻译
这里介绍了人工智能研究所(IARAI)组织的2022年Landslide4sense(L4S)竞赛的科学结果。竞争的目的是根据全球收集的卫星图像的大规模多个来源自动检测滑坡。 2022 L4S旨在促进有关使用卫星图像的语义分割任务的深度学习模型(DL)模型最新发展的跨学科研究。在过去的几年中,由于卷积神经网络(CNN)的发展,基于DL的模型已经达到了对图像解释的期望。本文的主要目的是介绍本次比赛中介绍的细节和表现最佳的算法。获胜的解决方案详细介绍了Swin Transformer,Segformer和U-NET等最先进的模型。还考虑了先进的机器学习技术和诸如硬采矿,自我培训和混合数据增强之类的策略。此外,我们描述了L4S基准数据集,以促进进一步的比较,并在线报告准确性评估的结果。可以在\ textIt {未来开发排行榜上访问数据,以供将来评估,\ url {https://www.iarai.ac.ac.at/landslide4sense/challenge/},并邀请研究人员提交更多预测结果,评估准确性在他们的方法中,将它们与其他用户的方法进行比较,理想情况下,改善了本文报告的滑坡检测结果。
translated by 谷歌翻译