We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss, intending to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. With such an alignment, a model can identify regions of an image corresponding to a given text input, and therefore transfer seamlessly to the task of open vocabulary semantic segmentation without requiring any segmentation annotations during training. Using pre-trained CLIP encoders with PACL, we are able to set the state-of-the-art on the task of open vocabulary zero-shot segmentation on 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Furthermore, we show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy compared to CLIP, across a suite of 12 image classification datasets.
translated by 谷歌翻译
分组和识别是视觉场景理解的重要组成部分,例如,用于对象检测和语义分割。借助端到端的深度学习系统,图像区域的分组通常通过像素级识别标签的自上而下的监督隐式进行。取而代之的是,在本文中,我们建议将分组机制恢复到深层网络中,从而使语义片段仅在文本监督下自动出现。我们提出了一个分层分组视觉变压器(GroupVit),它超出了常规的网格结构表示,并学会了将图像区域分组为逐渐更大的任意形状段。我们通过对比度损失在大规模图像文本数据集上与文本编码器共同训练小组vit。只有文本监督并且没有任何像素级注释,GroupVit就学会了将语义区域分组在一起,并以零拍的方式成功地将语义分割的任务转移到语义分割的任务,即,而没有任何进一步的微调。它在Pascal VOC 2012上获得了52.3%MIOU的零拍摄精度和Pascal上下文数据集中的22.4%MIOU,并竞争性地表现为需要更高水平监督的最先进的转移学习方法。我们在https://github.com/nvlabs/groupvit上开放代码。
translated by 谷歌翻译
最近,Vision-Language预训练的零拍图像分类已经表现出令人难以置信的成就,即该模型可以对任意类别进行分类而不看到该类别的其他注释图像。然而,目前尚不清楚如何在更广泛的视觉问题上进行零射识别,例如对象检测和语义分割。在本文中,我们通过在现成的预训练的视觉模型,即剪辑上建立零拍语义分割来定位零拍语义分割。很难因为语义分割和剪辑模型在不同的视觉粒度上执行,该语义分段处理在像素上时,而剪辑在图像上执行。为了解决处理粒度的差异,我们拒绝使用普遍的一级FCN基于FCN的框架,并倡导一个两级语义分割框架,其中第一阶段提取一个完全提取的掩模提案和第二阶段利用基于图像的剪辑模型在第一阶段生成的蒙版图像作物上执行零拍分类。我们的实验结果表明,这种简单的框架通过大型利润率超越了先前的最先进:+29.5 Hiou On Pascal VOC 2012 DataSet,+8.9 Hiou On Coco Stuff DataSet。凭借其简单性和强大的表现,我们希望本框架成为促进未来研究的基准。
translated by 谷歌翻译
对比语言 - 图像预训练(剪辑)在开放词汇零拍摄图像识别方面取得了显着突破。许多最近的研究利用预先训练的剪辑模型进行图像级分类和操纵。在本文中,我们进一步探索了剪辑的电位,用于像素级致密预测,具体地在语义分割中。在没有注释和微调的情况下,我们的方法Denseclip会产生合理的分段结果,在各种数据集中的开放概念上产生了合理的分段结果。通过添加伪标签和自我培训,Denseclip +超越了SOTA转换零点语义分割方法,通过大幅边缘,例如,Pascal VOC / Pascal Context / Coco Sift的宣传课程从35.6 / 20.7 / 30.3到86.1 / 66.7 / 54.7。我们还在输入损坏下测试了Denseclip的稳健性,并评估其在识别细粒度物体和新颖概念中的能力。我们的发现表明,Denseclip可以作为致密预测任务的新可靠的监督源,以实现无批准的分割。
translated by 谷歌翻译
We tackle open-world semantic segmentation, which aims at learning to segment arbitrary visual concepts in images, by using only image-text pairs without dense annotations. Existing open-world segmentation methods have shown impressive advances by employing contrastive learning (CL) to learn diverse visual concepts and adapting the learned image-level understanding to the segmentation task. However, these methods based on CL have a discrepancy since it only considers image-text level alignment in training time, while the segmentation task requires region-text level alignment at test time. In this paper, we propose a novel Text-grounded Contrastive Learning (TCL) framework to directly align a text and a region described by the text to address the train-test discrepancy. Our method generates a segmentation mask associated with a given text, extracts grounded image embedding from the masked region, and aligns it with text embedding via TCL. The framework addresses the discrepancy by letting the model learn region-text level alignment instead of image-text level alignment and encourages the model to directly improve the quality of generated segmentation masks. In addition, for a rigorous and fair comparison, we present a unified evaluation protocol with widely used 8 semantic segmentation datasets. TCL achieves state-of-the-art zero-shot segmentation performance with large margins in all datasets. Code is available at https://github.com/kakaobrain/tcl.
translated by 谷歌翻译
通常通过培训用于固定的对象类的模型来解决图像分割。稍后包含附加类或更复杂的查询是昂贵的,因为它需要重新培训包含这些表达式的数据集上的模型。在这里,我们提出了一个系统,该系统可以基于测试时间的任意提示生成图像分割。提示可以是文本或图像。这种方法使我们能够为三个常见的分段任务创建一个统一的模型(训练一次),这具有不同的挑战:引用表达式分割,零拍分段和单次分割。我们构建在剪辑模型中作为骨干,我们使用基于变压器的解码器扩展,该解码器能够致密预测。在对PhraseCut数据集的扩展版本进行培训之后,我们的系统基于自由文本提示符或表达查询的附加图像生成图像的二进制分段映射。详细分析了基于图像的提示的不同变体。这种新型混合输入允许不仅针对上述三个分段任务的动态调整,而是可以制定文本或图像查询的任何二进制分段任务。最后,我们发现我们的系统适应涉及可承受能力或属性的广义查询。源代码:https://ecterlab.org/code/clipseg
translated by 谷歌翻译
为了弥合监督语义细分与现实世界应用程序之间的差距,这些应用程序获取一个模型以识别任意新概念,最近的零弹性细分通过探索看不见的对象类别之间的关系,吸引了很多关注带有不同基础类别的通知数据。在本文中,我们提出了一种新的开放世界语义分割管道,该管道首次尝试学习各种开放世界类别的语义对象,而无需对密集注释进行任何努力,纯粹是通过纯粹利用自然存在的图像捕获数据来进行的。互联网。我们的方法,视觉语言驱动的语义分割(VIL-SEG),采用图像和文本编码器来生成图像捕获数据的视觉和文本嵌入,具有两个核心组件,具有赋予其分割能力的两个核心组件:首先,图像,图像,图像编码器通过基于视觉的对比和跨模式对比度进行了共同训练,这鼓励视觉嵌入既保留对细分任务至关重要的细粒语义和高级类别信息。此外,在图像编码器上设计了一个在线聚类头,该群体可以动态地将视觉嵌入到不同的语义组中,以便可以通过与各种文本嵌入来完成分类以完成我们的细分管道来对其进行分类。实验表明,如果不使用任何具有密集注释的数据,我们的方法可以直接分割任意类别的对象,超过了需要在三个基准数据集上进行数据标记的零摄像分割方法。
translated by 谷歌翻译
大规模的视觉预训练在各种下游任务中都表现出了令人印象深刻的进步。现有方法主要是通过图像和文本的全局表示形式的相似性或对图像和文本特征上的高级交叉模式关注来对跨模式对齐进行建模。但是,由于只有全局图像文本对齐信息,因此他们无法明确学习视觉区域和文本短语之间的细粒语义对齐。在本文中,我们介绍了Loupe,这是一种精细的语义一致性视觉语言预训练框架,该框架从新颖的游戏理论互动的角度学习了细粒度的语义对齐。为了有效地计算游戏理论相互作用,我们进一步提出了一种不确定性感知的神经Shapley交互学习模块。实验表明,Loupe在图像文本检索基准测试中实现了最新的。如果没有任何对象级的人类注释和微调,Loupe就可以在对象检测和视觉接地方面实现竞争性能。更重要的是,Loupe从大规模的原始图像文本对学习细粒语义的新方向。
translated by 谷歌翻译
我们设计了一个开放式图像分割模型,以将图像组织到任意文本指示的有意义区域中。最近的作品(剪辑和对齐),尽管使用图像级字幕标签获得了令人印象深刻的开放式摄氏分类精度,但仍无法用像素分段视觉概念。我们认为这些模型错过了视觉分组的重要步骤,该模型在学习视觉语义对齐之前将像素组织成小组。我们建议OpenSeg解决上述问题,同时仍利用可扩展的图像级标题监督。首先,它学会了为可能的组织提出细分面具。然后,它通过将标题中的每个单词与一个或几个预测的面具对齐来学习视觉语义对齐。我们发现蒙版表示是支持字幕学习图像分割的关键,从而可以扩大数据集和词汇大小。 OpenSeg大大优于pascal数据集上LSEG最近的开放式LSEG +19.9 MIOU的开放式方法。
translated by 谷歌翻译
我们提出了Clip-Lite,一种通过与文本注释的特征对齐方式进行视觉表示学习的信息有效方法。与先前提出的剪辑模型相比,剪辑液在优化其对比学学习目标期间只需要一个负图像文本样本对。我们通过利用信息有效的较低限制来实现这一点,以最大化两个输入模态之间的相互信息。这允许剪辑Lite培训,在获得比夹子的更好的性能的同时具有显着减少的数据和批量尺寸。我们通过在Coco-Tablions数据集上预先绘制来评估剪贴画并对其他数据集进行测试传输。 Clip-Lite在Pascal VOC分类上获得+ 15.4%的映射绝对增益,并在ImageNet上获得A + 22.1%的前1个精度增益,同时与其他更复杂,文本监督模型相当或优越。 Clip-Lite还优于剪辑图像和文本检索,零拍分类和视觉接地。最后,通过在表示学习期间执行显式图像文本对齐,我们显示Clip-Lite可以利用语言语义来鼓励可以在下游任务中使用的无偏见的视觉表示。
translated by 谷歌翻译
视觉语言预训练(VLP)模型在各种下游任务上表现出色。他们的成功在很大程度上取决于预训练的跨模式数据集的规模。但是,中文中缺乏大规模数据集和基准阻碍了中国VLP模型和更广泛的多语言应用程序的发展。在这项工作中,我们发布了一个名为Wukong的大型中国跨模式数据集,其中包含从网络收集的1亿个中文图像文本对。 Wukong旨在基准基准不同的多模式预训练方法,以促进VLP研究和社区发展。此外,我们发布了一组模型,预先训练了各种图像编码器(vit-b/vit-l/swint),还将高级预训练技术应用于VLP,例如锁定图像文本调整,相对于代币的相似性学习和减少互动。还提供了广泛的实验和不同下游任务的基准测试,包括新的最大人验证的图像文本测试数据集。实验表明,Wukong可以作为不同的跨模式学习方法的有前途的中国预培训数据集和基准。对于10个数据集上的零摄像图像分类任务,$ Wukong_ {vit-l} $达到的平均准确度为73.03%。对于图像文本检索任务,它在AIC-ICC上的平均召回率为71.6%,比Wenlan 2.0高12.9%。此外,我们的Wukong模型在下游任务上进行了基准测试,例如多个数据集上的其他变体,例如Flickr8k-CN,Flickr-30K-CN,Coco-CN,Coco-CN等。更多信息可以参考:https://wukong-dataset.github.io/wukong-dataset/。
translated by 谷歌翻译
Recently, CLIP has been applied to pixel-level zero-shot learning tasks via a two-stage scheme. The general idea is to first generate class-agnostic region proposals and then feed the cropped proposal regions to CLIP to utilize its image-level zero-shot classification capability. While effective, such a scheme requires two image encoders, one for proposal generation and one for CLIP, leading to a complicated pipeline and high computational cost. In this work, we pursue a simpler-and-efficient one-stage solution that directly extends CLIP's zero-shot prediction capability from image to pixel level. Our investigation starts with a straightforward extension as our baseline that generates semantic masks by comparing the similarity between text and patch embeddings extracted from CLIP. However, such a paradigm could heavily overfit the seen classes and fail to generalize to unseen classes. To handle this issue, we propose three simple-but-effective designs and figure out that they can significantly retain the inherent zero-shot capacity of CLIP and improve pixel-level generalization ability. Incorporating those modifications leads to an efficient zero-shot semantic segmentation system called ZegCLIP. Through extensive experiments on three public benchmarks, ZegCLIP demonstrates superior performance, outperforming the state-of-the-art methods by a large margin under both "inductive" and "transductive" zero-shot settings. In addition, compared with the two-stage method, our one-stage ZegCLIP achieves a speedup of about 5 times faster during inference. We release the code at https://github.com/ZiqinZhou66/ZegCLIP.git.
translated by 谷歌翻译
We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.
translated by 谷歌翻译
零拍语义分割(ZS3)旨在分割培训中没有看到的新型类别。现有的作品将zs3作为像素级零拍分类问题,以及在仅使用文本预先培训的语言模型的帮助下,将语义知识从看见课程转移到未知一体。虽然简单,像素级ZS3配方显示了集成具有图像文本对预训练的视觉语言模型的有限能力,并且目前展示了愿景任务的巨大潜力。灵感来自观察,人类经常执行段级语义标签,我们建议将zs3分成两个子任务:1)将像素分组到段中的类别不可知的分组任务。 2)段的零拍分类任务。前者的子任务不涉及类别信息,可以直接传输到未安装类的组像素。后一子任务在段级执行,提供了一种自然的方式,可以利用预先培训的大规模视觉模型,用于ZS3的图像文本对(例如剪辑)。基于解耦制剂,我们提出了一种简单且有效的零拍语义分割模型,称为ZegFormer,这优于大幅边缘的先前方法,例如,Pascal VOC的35分和3分在Coco-在宫颈课程方面的东西。代码将在https://github.com/dingjiansw101/zegformer发布。
translated by 谷歌翻译
我们呈现LSEG,这是一种用于语言驱动语义图像分割的新模型。 LSEG使用文本编码器来计算描述性输入标签(例如,“草”或“构建”)的嵌入式,以及基于变压器的图像编码器,该图像编码器计算输入图像的密度每个像素嵌入。图像编码器具有对比度目标,以将像素嵌入对准对应语义类的文本嵌入。文本嵌入式提供了一种灵活的标签表示,其中将语义相似的标签映射到嵌入空间中的类似区域(例如,“猫”和“毛茸茸”)。这允许LSEG概括到以前在测试时间的预先看不见的类别,而不会再培训或甚至需要单一的额外训练样本。我们展示了与现有的零点和少量拍摄语义分割方法相比,我们的方法实现了高竞争激烈的零射性能,甚至在提供固定标签集时符合传统分段算法的准确性。代码和演示可在https://github.com/isl-org/lang-seg获取。
translated by 谷歌翻译
最先进的愿景和愿景和语言模型依靠大规模的Visio-linguisting预借鉴,以获得各种下游任务的良好性能。通常,这种模型通常是跨模态(对比)或多模态(具有早期融合)但不是两者;它们通常只针对特定的方式或任务。有希望的方向将是使用单一整体普遍模型,作为“基础”,目标是一次性的所有方式 - 真正的视觉和语言基础模型应该擅长视力任务,语言任务和交叉和多数模态视觉和语言任务。我们将Flava介绍在这样的模型中,并在跨越这些目标模式的广泛的35个任务上展示令人印象深刻的性能。
translated by 谷歌翻译
远见和语言预测已成为解决多模式下游任务的普遍方法。当前的趋势是朝着更大的模型和预处理数据集迈进。从长远来看,这一计算头急促似乎是不合理的,而是朝着可持续的解决方案迈进,事实上,排除了资源有限的学术实验室。在这项工作中,我们提出了一个称为VICHA的新框架,该框架有效利用输入数据以通过以下方式提高学习,以: ,(c)利用图像级注释,称为视觉概念,使用现有基础模型(例如剪辑)获得,以提高图像编码器的性能。尽管对数据的预估计少了四倍,但我们的VICHA策略在下游任务(例如图像文本检索,VQA,视觉推理,视觉上和视觉接地)上的其他方法优于其他方法。该代码将在此处公开提供:https://github.com/mshukor/vicha
translated by 谷歌翻译
从纯图像和具有对比性损失的纯图像和文本预测的自我监督的视觉语言是有效的,但是由于双流式体系结构仅在全球层面上与图像和文本表示形式对齐,因此忽略了细粒度​​的对齐。早些时候,受监督的,非对比度的方法具有更细粒度的对齐方式,但需要致密的注释,这些注释不可伸缩。我们提出了一个单个流体系结构,该体系结构使用两个新颖的任务:对称交叉模式重建(XMM)和一个伪标记的关键字预测,将图像和语言对齐:全局,细粒度的补丁和概念/语义(PSL)。在XMM中,我们从一种模态掩盖了输入令牌,并使用跨模式信息重建掩盖的令牌,从而改善了两种模式之间的细粒度对齐。在PSL中,我们使用注意力在标题中选择关键字,使用动量编码器推荐标题中缺少但在图像中表示的其他重要关键字,然后训练视觉编码器以预测这些关键字的存在,并帮助它。学习对于将文本令牌接地到图像区域至关重要的语义概念。我们证明了对图像文本检索,接地,视觉问题的回答/推理的竞争性能和提高的数据效率,以针对对更多数据进行培训的较大模型和模型。 Zaidkhan.me/simla上可用的代码和型号。
translated by 谷歌翻译
探索大规模预处理的基础模型对计算机视觉具有重大兴趣,因为这些模型可以快速转移到许多下游任务中。本文介绍了对比字幕(COCA),这是一种极简主义的设计,旨在为图像文本编码器编码器基础模型预算与对比度损失和字幕损失,从而从剪辑和诸如simvlm之类的生成方法之类的对比方法中包含模型能力。与所有解码器层都参与编码器输出的标准编码器 - 模块变压器相反,可口可乐省略了解码器层的上半部分的交叉注意,以编码单峰文本表示,并串联到剩余的解码器层,这些解码器与图像编码器相交的解码器层多模式图像文本表示。除了对多模态解码器输出的字幕损失外,我们还应用了单峰图像和文本嵌入之间的对比损失,该输出可以预测文本令牌自动加压。通过共享相同的计算图,可以用最小的开销有效地计算两个培训目标。可口可乐是端到端和从头开始的网络尺度alt-text数据和带注释的图像,通过将所有标签视为文本,无缝地统一自然语言监督以进行表示。从经验上讲,可口可乐通过零拍传输或在广泛的下游任务上进行零摄像转移或最少的特定任务适应,跨越视觉识别(Imagenet,Kinetics-400/600/700,瞬间, ),交叉模式检索(MSCOCO,FLICKR30K,MSR-VTT),多模式理解(VQA,SNLI-VE,NLVR2)和图像字幕(MSCOCO,NOCAPS)。值得注意的是,在Imagenet分类方面,COCA获得了86.3%的TOP-1准确性,带有冷冻编码器和学习的分类头90.6%,以及带有填充编码器的Imagenet上的新最先进的91.0%Top-1 Top-1精度。
translated by 谷歌翻译
本文提出了一个简单而有效的框架蒙版,该框架将新提出的掩盖自distillation纳入对比的语言图像预处理中。掩盖自distillation的核心思想是将表示从完整的图像提取到蒙版图像预测的表示形式。这种合并享有两个重要的好处。首先,掩盖的自我验证目标是本地贴片表示学习,这与视觉对比度的互补,专注于与文本相关的表示。二,掩盖的自我验证也与视觉语言对比符合训练目标的视野对比是一致的。视觉编码器用于功能对齐,因此能够学习本地语义从该语言中获得间接监督。我们提供了专门设计的实验,并进行了全面的分析,以验证这两个好处。从经验上讲,我们表明,当MaskClip应用于各种具有挑战性的下游任务时,可以在线性探测,填充和零拍摄中取得卓越的结果,并在语言编码器的指导下取得了卓越的结果。
translated by 谷歌翻译