协作深度加强学习(CDRL)算法,其中多个代理可以在无线网络上协调是一种有希望的方法,以便在复杂的动态环境中依赖实时决策的未来智能和自主系统。尽管如此,在实际情况下,CDRL由​​于代理的异质性及其学习任务,不同环境,学习时间限制以及无线网络的资源限制,因此CDRL面临着许多挑战。为了解决这些挑战,在本文中,提出了一种新颖的语义感知CDRL方法,以使一组异构未经训练的代理具有语义连接的DRL任务,以在资源受限无线蜂窝网络上有效地协作。为此,提出了一种新的异构联邦DRL(HFDRL)算法,以选择用于协作的语义相关DRL代理的最佳子集。然后,该方法将共同优化合作选定代理的训练损失和无线带宽分配,以便在其实时任务的时间限制内培训每个代理。仿真结果表明,与最先进的基线相比,所提出的算法的卓越性能。
translated by 谷歌翻译
需要下一代无线网络以同时满足各种服务和标准。为了解决即将到来的严格条件,开发了具有柔性设计,分解虚拟和可编程组件以及智能闭环控制等特征的新型开放式访问网络(O-RAN)。面对不断变化的情况,O-Ran切片被研究为确保网络服务质量(QoS)的关键策略。但是,必须动态控制不同的网络切片,以避免由环境快速变化引起的服务水平一致性(SLA)变化。因此,本文介绍了一个新颖的框架,能够通过智能提供的提供资源来管理网络切片。由于不同的异质环境,智能机器学习方法需要足够的探索来处理无线网络中最严厉的情况并加速收敛。为了解决这个问题,提出了一种新解决方案,基于基于进化的深度强化学习(EDRL),以加速和优化无线电访问网络(RAN)智能控制器(RIC)模块中的切片管理学习过程。为此,O-RAN切片被表示为Markov决策过程(MDP),然后最佳地解决了资源分配,以使用EDRL方法满足服务需求。在达到服务需求方面,仿真结果表明,所提出的方法的表现优于DRL基线62.2%。
translated by 谷歌翻译
预计下一代(NEVERG)网络将支持苛刻的触觉互联网应用,例如增强现实和连接的自动车辆。虽然最近的创新带来了更大的联系能力的承诺,它们对环境的敏感性以及不稳定的性能无视基于传统的基于模型的控制理由。零触摸数据驱动的方法可以提高网络适应当前操作条件的能力。诸如强化学习(RL)算法等工具可以仅基于观察历史来构建最佳控制策略。具体而言,使用深神经网络(DNN)作为预测器的深RL(DRL)已经被示出,即使在复杂的环境和高维输入中也能够实现良好的性能。但是,DRL模型的培训需要大量数据,这可能会限制其对潜在环境的不断发展统计数据的适应性。此外,无线网络是固有的分布式系统,其中集中式DRL方法需要过多的数据交换,而完全分布的方法可能导致较慢的收敛速率和性能下降。在本文中,为了解决这些挑战,我们向DRL提出了联合学习(FL)方法,我们指的是联邦DRL(F-DRL),其中基站(BS)通过仅共享模型的重量协作培训嵌入式DNN而不是训练数据。我们评估了两个不同版本的F-DRL,价值和策略,并显示出与分布式和集中式DRL相比实现的卓越性能。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
FOG无线电访问网络(F-RAN)是一项有前途的技术,用户移动设备(MDS)可以将计算任务卸载到附近的FOG接入点(F-APS)。由于F-APS的资源有限,因此设计有效的任务卸载方案很重要。在本文中,通过考虑随时间变化的网络环境,制定了F-RAN中的动态计算卸载和资源分配问题,以最大程度地减少MD的任务执行延迟和能源消耗。为了解决该问题,提出了基于联合的深入强化学习(DRL)算法,其中深层确定性策略梯度(DDPG)算法在每个F-AP中执行计算卸载和资源分配。利用联合学习来培训DDPG代理,以降低培训过程的计算复杂性并保护用户隐私。仿真结果表明,与其他现有策略相比,提议的联合DDPG算法可以更快地实现MDS更快的任务执行延迟和能源消耗。
translated by 谷歌翻译
The modern dynamic and heterogeneous network brings differential environments with respective state transition probability to agents, which leads to the local strategy trap problem of traditional federated reinforcement learning (FRL) based network optimization algorithm. To solve this problem, we propose a novel Differentiated Federated Reinforcement Learning (DFRL), which evolves the global policy model integration and local inference with the global policy model in traditional FRL to a collaborative learning process with parallel global trends learning and differential local policy model learning. In the DFRL, the local policy learning model is adaptively updated with the global trends model and local environment and achieves better differentiated adaptation. We evaluate the outperformance of the proposal compared with the state-of-the-art FRL in a classical CartPole game with heterogeneous environments. Furthermore, we implement the proposal in the heterogeneous Space-air-ground Integrated Network (SAGIN) for the classical traffic offloading problem in network. The simulation result shows that the proposal shows better global performance and fairness than baselines in terms of throughput, delay, and packet drop rate.
translated by 谷歌翻译
合作的感知在将车辆的感知范围扩展到超出其视线之外至关重要。然而,在有限的通信资源下交换原始感官数据是不可行的。为了实现有效的合作感知,车辆需要解决以下基本问题:需要共享哪些感官数据?,在哪个分辨率?,以及哪个车辆?为了回答这个问题,在本文中,提出了一种新颖的框架来允许加强学习(RL)基于车辆关联,资源块(RB)分配和通过利用基于四叉的点的协作感知消息(CPM)的内容选择云压缩机制。此外,引入了联合的RL方法,以便在跨车辆上加速训练过程。仿真结果表明,RL代理能够有效地学习车辆关联,RB分配和消息内容选择,同时在接收的感官信息方面最大化车辆的满足。结果还表明,与非联邦方法相比,联邦RL改善了培训过程,可以在与非联邦方法相同的时间内实现更好的政策。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
Recent technological advancements in space, air and ground components have made possible a new network paradigm called "space-air-ground integrated network" (SAGIN). Unmanned aerial vehicles (UAVs) play a key role in SAGINs. However, due to UAVs' high dynamics and complexity, the real-world deployment of a SAGIN becomes a major barrier for realizing such SAGINs. Compared to the space and terrestrial components, UAVs are expected to meet performance requirements with high flexibility and dynamics using limited resources. Therefore, employing UAVs in various usage scenarios requires well-designed planning in algorithmic approaches. In this paper, we provide a comprehensive review of recent learning-based algorithmic approaches. We consider possible reward functions and discuss the state-of-the-art algorithms for optimizing the reward functions, including Q-learning, deep Q-learning, multi-armed bandit (MAB), particle swarm optimization (PSO) and satisfaction-based learning algorithms. Unlike other survey papers, we focus on the methodological perspective of the optimization problem, which can be applicable to various UAV-assisted missions on a SAGIN using these algorithms. We simulate users and environments according to real-world scenarios and compare the learning-based and PSO-based methods in terms of throughput, load, fairness, computation time, etc. We also implement and evaluate the 2-dimensional (2D) and 3-dimensional (3D) variations of these algorithms to reflect different deployment cases. Our simulation suggests that the $3$D satisfaction-based learning algorithm outperforms the other approaches for various metrics in most cases. We discuss some open challenges at the end and our findings aim to provide design guidelines for algorithm selections while optimizing the deployment of UAV-assisted SAGINs.
translated by 谷歌翻译
The explosive growth of dynamic and heterogeneous data traffic brings great challenges for 5G and beyond mobile networks. To enhance the network capacity and reliability, we propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme that adaptively allocates the uplink and downlink time-frequency resources of base stations (BSs) to meet the asymmetric and heterogeneous traffic demands while alleviating the inter-cell interference. We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP) that maximizes the long-term expected sum rate under the users' packet dropping ratio constraints. In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named federated Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm. The BSs decide their local time-frequency configurations through RL algorithms and achieve global training via exchanging local RL models with their neighbors under a decentralized federated learning framework. Specifically, to deal with the large-scale discrete action space of each BS, we adopt a DDPG-based algorithm to generate actions in a continuous space, and then utilize Wolpertinger policy to reduce the mapping errors from continuous action space back to discrete action space. Simulation results demonstrate the superiority of our proposed algorithm to benchmark algorithms with respect to system sum rate.
translated by 谷歌翻译
Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
与LTE网络相比,5G的愿景在于提供较高的数据速率,低延迟(为了实现近实时应用程序),大大增加了基站容量以及用户的接近完美服务质量(QoS)。为了提供此类服务,5G系统将支持LTE,NR,NR-U和Wi-Fi等访问技术的各种组合。每种无线电访问技术(RAT)都提供不同类型的访问,这些访问应在用户中对其进行最佳分配和管理。除了资源管理外,5G系统还将支持双重连接服务。因此,网络的编排对于系统经理在旧式访问技术方面来说是一个更困难的问题。在本文中,我们提出了一种基于联合元学习(FML)的大鼠分配算法,该算法使RAN Intelligent Controller(RIC)能够更快地适应动态变化的环境。我们设计了一个包含LTE和5G NR服务技术的模拟环境。在模拟中,我们的目标是在传输的截止日期内满足UE需求,以提供更高的QoS值。我们将提出的算法与单个RL试剂,爬行动物算法和基于规则的启发式方法进行了比较。仿真结果表明,提出的FML方法分别在第一部部署回合21%和12%时达到了较高的缓存率。此外,在比较方法中,提出的方法最快地适应了新任务和环境。
translated by 谷歌翻译
In heterogeneous networks (HetNets), the overlap of small cells and the macro cell causes severe cross-tier interference. Although there exist some approaches to address this problem, they usually require global channel state information, which is hard to obtain in practice, and get the sub-optimal power allocation policy with high computational complexity. To overcome these limitations, we propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet, where each access point makes power control decisions independently based on local information. To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems. By introducing regularization terms in the loss function, each agent tends to choose an experienced action with high reward when revisiting a state, and thus the policy updating speed slows down. In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process. We then implement the proposed PQL in the considered HetNet and compare it with other distributed-training-and-execution (DTE) algorithms. Simulation results show that our proposed PQL can learn the desired power control policy from a dynamic environment where the locations of users change episodically and outperform existing DTE MADRL algorithms.
translated by 谷歌翻译
在本文中,我们研究了多服务器边缘计算中基于区块链的联合学习(BFL)的新延迟优化问题。在此系统模型中,分布式移动设备(MDS)与一组Edge服务器(ESS)通信,以同时处理机器学习(ML)模型培训和阻止开采。为了协助ML模型培训用于资源受限的MD,我们制定了一种卸载策略,使MD可以将其数据传输到相关的ESS之一。然后,我们基于共识机制在边缘层上提出了一个新的分散的ML模型聚合解决方案,以通过基于对等(P2P)基于基于的区块链通信构建全局ML模型。区块链在MDS和ESS之间建立信任,以促进可靠的ML模型共享和合作共识形成,并能够快速消除由中毒攻击引起的操纵模型。我们将延迟感知的BFL作为优化,旨在通过联合考虑数据卸载决策,MDS的传输功率,MDS数据卸载,MDS的计算分配和哈希功率分配来最大程度地减少系统延迟。鉴于离散卸载和连续分配变量的混合作用空间,我们提出了一种具有参数化优势演员评论家算法的新型深度强化学习方案。从理论上讲,我们根据聚合延迟,迷你批量大小和P2P通信回合的数量来表征BFL的收敛属性。我们的数值评估证明了我们所提出的方案优于基线,从模型训练效率,收敛速度,系统潜伏期和对模型中毒攻击的鲁棒性方面。
translated by 谷歌翻译
The connectivity-aware path design is crucial in the effective deployment of autonomous Unmanned Aerial Vehicles (UAVs). Recently, Reinforcement Learning (RL) algorithms have become the popular approach to solving this type of complex problem, but RL algorithms suffer slow convergence. In this paper, we propose a Transfer Learning (TL) approach, where we use a teacher policy previously trained in an old domain to boost the path learning of the agent in the new domain. As the exploration processes and the training continue, the agent refines the path design in the new domain based on the subsequent interactions with the environment. We evaluate our approach considering an old domain at sub-6 GHz and a new domain at millimeter Wave (mmWave). The teacher path policy, previously trained at sub-6 GHz path, is the solution to a connectivity-aware path problem that we formulate as a constrained Markov Decision Process (CMDP). We employ a Lyapunov-based model-free Deep Q-Network (DQN) to solve the path design at sub-6 GHz that guarantees connectivity constraint satisfaction. We empirically demonstrate the effectiveness of our approach for different urban environment scenarios. The results demonstrate that our proposed approach is capable of reducing the training time considerably at mmWave.
translated by 谷歌翻译
本文调查了大师无人机(MUAV) - 互联网(IOT)网络,我们建议使用配备有智能反射表面(IRS)的可充电辅助UAV(AUAV)来增强来自MUAV的通信信号并将MUAG作为充电电源利用。在拟议的模型下,我们研究了这些能量有限的无人机的最佳协作策略,以最大限度地提高物联网网络的累计吞吐量。根据两个无人机之间是否有收费,配制了两个优化问题。为了解决这些问题,提出了两个多代理深度强化学习(DRL)方法,这些方法是集中培训多师深度确定性政策梯度(CT-MADDPG)和多代理深度确定性政策选项评论仪(MADDPOC)。结果表明,CT-MADDPG可以大大减少对UAV硬件的计算能力的要求,拟议的MADDPOC能够在连续动作域中支持低水平的多代理合作学习,其优于优势基于选项的分层DRL,只支持单代理学习和离散操作。
translated by 谷歌翻译
设想了一座低空地球轨道(LEO)卫星(SAT)的Mega-Constulation,以提供超出第五代(5G)蜂窝系统的全球覆盖网网络。 Leo SAT网络在时代的SAT网络拓扑中展示了许多用户的极长链接距离。这使得现有的多个访问协议,例如基于随机接入信道(RACH)的蜂窝协议,专为固定地面网络拓扑而设计,不适用于。为了克服这个问题,在本文中,我们提出了一种新颖的LEO SAT网络无随机访问解决方案,被称为随机接入信道协议(ERACH)。在与现有的基于模型和标准化协议的鲜明对比中,ERACH是一种无模型方法,通过使用多档次深度加强学习(Madrl),通过与非静止网络环境的互动出现。此外,通过利用已知的SAT轨道模式,ERACH不需要跨越用户的中心协调或额外的通信,而训练会聚通过规则的轨道模式稳定。与RACH相比,我们从各种模拟中展示了我们所提出的ERACH的平均网络吞吐量增加了54.6%,平均访问延迟较低的两倍,同时实现了0.989的jain的公平指数。
translated by 谷歌翻译
Recent advances in distributed artificial intelligence (AI) have led to tremendous breakthroughs in various communication services, from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wirelessly connected devices, random channel fluctuations and the incumbent services running on the same network impact the performance of both distributed learning and the coexisting service. In this paper, we investigate a mixed service scenario where distributed AI workflow and ultra-reliable low latency communication (URLLC) services run concurrently over a network. Consequently, we propose a risk sensitivity-based formulation for device selection to minimize the AI training delays during its convergence period while ensuring that the operational requirements of the URLLC service are met. To address this challenging coexistence problem, we transform it into a deep reinforcement learning problem and address it via a framework based on soft actor-critic algorithm. We evaluate our solution with a realistic and 3GPP-compliant simulator for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delay of the distributed AI service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all network resources.
translated by 谷歌翻译
对于正交多访问(OMA)系统,服务的用户设备(UES)的数量仅限于可用的正交资源的数量。另一方面,非正交多访问(NOMA)方案允许多个UES使用相同的正交资源。这种额外的自由度为资源分配带来了新的挑战。缓冲状态信息(BSI),例如等待传输的数据包的大小和年龄,可用于改善OMA系统中的调度。在本文中,我们研究了BSI对上行链路多载波NOMA场景中集中调度程序的性能的影响,UE具有各种数据速率和延迟要求。为了处理将UES分配给资源的大型组合空间,我们提出了一个基于Actor-Critic-Critic强化学习纳入BSI的新型调度程序。使用诺基亚的“无线套件”进行培训和评估。我们提出了各种新颖的技术来稳定和加快训练。建议的调度程序优于基准调度程序。
translated by 谷歌翻译
Technology advancements in wireless communications and high-performance Extended Reality (XR) have empowered the developments of the Metaverse. The demand for Metaverse applications and hence, real-time digital twinning of real-world scenes is increasing. Nevertheless, the replication of 2D physical world images into 3D virtual world scenes is computationally intensive and requires computation offloading. The disparity in transmitted scene dimension (2D as opposed to 3D) leads to asymmetric data sizes in uplink (UL) and downlink (DL). To ensure the reliability and low latency of the system, we consider an asynchronous joint UL-DL scenario where in the UL stage, the smaller data size of the physical world scenes captured by multiple extended reality users (XUs) will be uploaded to the Metaverse Console (MC) to be construed and rendered. In the DL stage, the larger-size 3D virtual world scenes need to be transmitted back to the XUs. The decisions pertaining to computation offloading and channel assignment are optimized in the UL stage, and the MC will optimize power allocation for users assigned with a channel in the UL transmission stage. Some problems arise therefrom: (i) interactive multi-process chain, specifically Asynchronous Markov Decision Process (AMDP), (ii) joint optimization in multiple processes, and (iii) high-dimensional objective functions, or hybrid reward scenarios. To ensure the reliability and low latency of the system, we design a novel multi-agent reinforcement learning algorithm structure, namely Asynchronous Actors Hybrid Critic (AAHC). Extensive experiments demonstrate that compared to proposed baselines, AAHC obtains better solutions with preferable training time.
translated by 谷歌翻译