The modern dynamic and heterogeneous network brings differential environments with respective state transition probability to agents, which leads to the local strategy trap problem of traditional federated reinforcement learning (FRL) based network optimization algorithm. To solve this problem, we propose a novel Differentiated Federated Reinforcement Learning (DFRL), which evolves the global policy model integration and local inference with the global policy model in traditional FRL to a collaborative learning process with parallel global trends learning and differential local policy model learning. In the DFRL, the local policy learning model is adaptively updated with the global trends model and local environment and achieves better differentiated adaptation. We evaluate the outperformance of the proposal compared with the state-of-the-art FRL in a classical CartPole game with heterogeneous environments. Furthermore, we implement the proposal in the heterogeneous Space-air-ground Integrated Network (SAGIN) for the classical traffic offloading problem in network. The simulation result shows that the proposal shows better global performance and fairness than baselines in terms of throughput, delay, and packet drop rate.
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
近年来,随着空间航天器实体的大规模部署以及卫星在板载功能的增加,在过度网络动态的情况下,与TCP/IP相比,出现了比TCP/IP更强大的通信协议。 DTN节点缓冲区管理仍然是一个活跃的研究领域,因为DTN核心协议的当前实现仍然依赖于以下假设:在不同的网络节点中始终有足够的内存来存储和正向捆绑包。此外,经典排队理论不适用于DTN节点缓冲区的动态管理。因此,本文提出了一种集中式方法,以基于高级强化学习(RL)策略优势行动者 - 批评者(A2C)自动管理低地球(LEO)卫星星座中的认知DTN节点。该方法旨在探索培训地球同步地球轨道智能代理,以管理Leo卫星星座中的所有DTN节点。 A2C代理的目的是在考虑节点内存利用率的同时最大化交付成功率并最大程度地减少网络资源消耗成本。智能代理可以根据束优先级动态调整无线电数据速率并执行下降操作。为了衡量在LEO卫星星座场景中将A2C技术应用于DTN节点管理问题的有效性,本文将受过训练的智能代理策略与其他两种非RL政策进行了比较,包括随机和标准政策。实验表明,A2C策略平衡了交付成功率和成本,并提供了最高的奖励和最低的节点存储器利用率。
translated by 谷歌翻译
The explosive growth of dynamic and heterogeneous data traffic brings great challenges for 5G and beyond mobile networks. To enhance the network capacity and reliability, we propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme that adaptively allocates the uplink and downlink time-frequency resources of base stations (BSs) to meet the asymmetric and heterogeneous traffic demands while alleviating the inter-cell interference. We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP) that maximizes the long-term expected sum rate under the users' packet dropping ratio constraints. In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named federated Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm. The BSs decide their local time-frequency configurations through RL algorithms and achieve global training via exchanging local RL models with their neighbors under a decentralized federated learning framework. Specifically, to deal with the large-scale discrete action space of each BS, we adopt a DDPG-based algorithm to generate actions in a continuous space, and then utilize Wolpertinger policy to reduce the mapping errors from continuous action space back to discrete action space. Simulation results demonstrate the superiority of our proposed algorithm to benchmark algorithms with respect to system sum rate.
translated by 谷歌翻译
预计下一代(NEVERG)网络将支持苛刻的触觉互联网应用,例如增强现实和连接的自动车辆。虽然最近的创新带来了更大的联系能力的承诺,它们对环境的敏感性以及不稳定的性能无视基于传统的基于模型的控制理由。零触摸数据驱动的方法可以提高网络适应当前操作条件的能力。诸如强化学习(RL)算法等工具可以仅基于观察历史来构建最佳控制策略。具体而言,使用深神经网络(DNN)作为预测器的深RL(DRL)已经被示出,即使在复杂的环境和高维输入中也能够实现良好的性能。但是,DRL模型的培训需要大量数据,这可能会限制其对潜在环境的不断发展统计数据的适应性。此外,无线网络是固有的分布式系统,其中集中式DRL方法需要过多的数据交换,而完全分布的方法可能导致较慢的收敛速率和性能下降。在本文中,为了解决这些挑战,我们向DRL提出了联合学习(FL)方法,我们指的是联邦DRL(F-DRL),其中基站(BS)通过仅共享模型的重量协作培训嵌入式DNN而不是训练数据。我们评估了两个不同版本的F-DRL,价值和策略,并显示出与分布式和集中式DRL相比实现的卓越性能。
translated by 谷歌翻译
协作深度加强学习(CDRL)算法,其中多个代理可以在无线网络上协调是一种有希望的方法,以便在复杂的动态环境中依赖实时决策的未来智能和自主系统。尽管如此,在实际情况下,CDRL由​​于代理的异质性及其学习任务,不同环境,学习时间限制以及无线网络的资源限制,因此CDRL面临着许多挑战。为了解决这些挑战,在本文中,提出了一种新颖的语义感知CDRL方法,以使一组异构未经训练的代理具有语义连接的DRL任务,以在资源受限无线蜂窝网络上有效地协作。为此,提出了一种新的异构联邦DRL(HFDRL)算法,以选择用于协作的语义相关DRL代理的最佳子集。然后,该方法将共同优化合作选定代理的训练损失和无线带宽分配,以便在其实时任务的时间限制内培训每个代理。仿真结果表明,与最先进的基线相比,所提出的算法的卓越性能。
translated by 谷歌翻译
The space-air-ground integrated network (SAGIN), one of the key technologies for next-generation mobile communication systems, can facilitate data transmission for users all over the world, especially in some remote areas where vast amounts of informative data are collected by Internet of remote things (IoRT) devices to support various data-driven artificial intelligence (AI) services. However, training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues. To tackle these challenges, we first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL). Specifically, the IoRT devices in the ground layer leverage their private data to perform model training locally, while the air nodes in the air layer and the ring-structured low earth orbit (LEO) satellite constellation in the space layer are in charge of model aggregation (synchronization) at different scales.To further enhance communication efficiency and inference performance of OBL, an efficient Communication and Non-IID-aware Air node-Satellite Assignment (CNASA) algorithm is designed by taking the data class distribution of the air nodes as well as their geographic locations into account. Furthermore, we extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks. We analyze the convergence of our OBL framework and conclude that the CNASA algorithm contributes to the fast convergence of the global model. Extensive experiments based on realistic datasets corroborate the superior performance of our algorithm over the benchmark policies.
translated by 谷歌翻译
FOG无线电访问网络(F-RAN)是一项有前途的技术,用户移动设备(MDS)可以将计算任务卸载到附近的FOG接入点(F-APS)。由于F-APS的资源有限,因此设计有效的任务卸载方案很重要。在本文中,通过考虑随时间变化的网络环境,制定了F-RAN中的动态计算卸载和资源分配问题,以最大程度地减少MD的任务执行延迟和能源消耗。为了解决该问题,提出了基于联合的深入强化学习(DRL)算法,其中深层确定性策略梯度(DDPG)算法在每个F-AP中执行计算卸载和资源分配。利用联合学习来培训DDPG代理,以降低培训过程的计算复杂性并保护用户隐私。仿真结果表明,与其他现有策略相比,提议的联合DDPG算法可以更快地实现MDS更快的任务执行延迟和能源消耗。
translated by 谷歌翻译
交通优化挑战,如负载平衡,流量调度和提高数据包交付时间,是广域网(WAN)中困难的在线决策问题。例如,需要复杂的启发式方法,以找到改善分组输送时间并最小化可能由链接故障或拥塞引起的中断的最佳路径。最近的加强学习(RL)算法的成功可以提供有用的解决方案,以建立更好的鲁棒系统,这些系统从无模式设置中学习。在这项工作中,我们考虑了一条路径优化问题,专门针对数据包路由,在大型复杂网络中。我们开发和评估一种无模型方法,应用多代理元增强学习(MAMRL),可以确定每个数据包的下一跳,以便将其传递到其目的地,最短的时间整体。具体地,我们建议利用和比较深度策略优化RL算法,以便在通信网络中启用分布式无模型控制,并呈现基于新的Meta学习的框架Mamrl,以便快速适应拓扑变化。为了评估所提出的框架,我们用各种WAN拓扑模拟。我们广泛的数据包级仿真结果表明,与古典最短路径和传统的加强学习方法相比,Mamrl即使网络需求增加也显着降低了平均分组交付时间;与非元深策略优化算法相比,我们的结果显示在连杆故障发生的同时出现相当的平均数据包交付时间时减少较少的剧集中的数据包丢失。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
与LTE网络相比,5G的愿景在于提供较高的数据速率,低延迟(为了实现近实时应用程序),大大增加了基站容量以及用户的接近完美服务质量(QoS)。为了提供此类服务,5G系统将支持LTE,NR,NR-U和Wi-Fi等访问技术的各种组合。每种无线电访问技术(RAT)都提供不同类型的访问,这些访问应在用户中对其进行最佳分配和管理。除了资源管理外,5G系统还将支持双重连接服务。因此,网络的编排对于系统经理在旧式访问技术方面来说是一个更困难的问题。在本文中,我们提出了一种基于联合元学习(FML)的大鼠分配算法,该算法使RAN Intelligent Controller(RIC)能够更快地适应动态变化的环境。我们设计了一个包含LTE和5G NR服务技术的模拟环境。在模拟中,我们的目标是在传输的截止日期内满足UE需求,以提供更高的QoS值。我们将提出的算法与单个RL试剂,爬行动物算法和基于规则的启发式方法进行了比较。仿真结果表明,提出的FML方法分别在第一部部署回合21%和12%时达到了较高的缓存率。此外,在比较方法中,提出的方法最快地适应了新任务和环境。
translated by 谷歌翻译
传统的多播路由方法在构建多播树时存在一些问题,例如对网络状态信息的访问有限,对网络的动态和复杂变化的适应性不佳以及不灵活的数据转发。为了解决这些缺陷,软件定义网络(SDN)中的最佳多播路由问题是根据多目标优化问题量身定制的,以及基于深Q网络(DQN)深度强化学习(DQN)的智能多播路由算法DRL-M4MR( DRL)方法旨在构建SDN中的多播树。首先,通过组合SDN的全局视图和控制,将多播树状态矩阵,链路带宽矩阵,链路延迟矩阵和链路延迟损耗矩阵设计为DRL代理的状态空间。其次,代理的动作空间是网络中的所有链接,而动作选择策略旨在将链接添加到四种情况下的当前多播树。第三,单步和最终奖励功能表格旨在指导智能以做出决定以构建最佳多播树。实验结果表明,与现有算法相比,DRL-M4MR的多播树结构可以在训练后获得更好的带宽,延迟和数据包损耗率,并且可以在动态网络环境中做出更智能的多播路由决策。
translated by 谷歌翻译
无人驾驶飞机(UAV)用作空中基础站,可将时间敏感的包装从物联网设备传递到附近的陆地底站(TBS)。在此类无人产用的物联网网络中安排数据包,以确保TBS在TBS上确保新鲜(或最新的)物联网设备的数据包是一个挑战性的问题,因为它涉及两个同时的步骤(i)(i)在IOT设备上生成的数据包的同时进行样本由UAVS [HOP-1]和(ii)将采样数据包从UAVS更新到TBS [Hop-2]。为了解决这个问题,我们建议针对两跳UAV相关的IoT网络的信息年龄(AOI)调度算法。首先,我们提出了一个低复杂的AOI调度程序,称为MAF-MAD,该计划使用UAV(HOP-1)和最大AOI差异(MAD)策略采样最大AOI(MAF)策略,以更新从无人机到TBS(Hop-2)。我们证明,MAF-MAD是理想条件下的最佳AOI调度程序(无线无线通道和在物联网设备上产生交通生成)。相反,对于一般条件(物联网设备的损失渠道条件和不同的周期性交通生成),提出了深厚的增强学习算法,即近端政策优化(PPO)基于调度程序。仿真结果表明,在所有考虑的一般情况下,建议的基于PPO的调度程序优于MAF-MAD,MAF和Round-Robin等其他调度程序。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
Recent technological advancements in space, air and ground components have made possible a new network paradigm called "space-air-ground integrated network" (SAGIN). Unmanned aerial vehicles (UAVs) play a key role in SAGINs. However, due to UAVs' high dynamics and complexity, the real-world deployment of a SAGIN becomes a major barrier for realizing such SAGINs. Compared to the space and terrestrial components, UAVs are expected to meet performance requirements with high flexibility and dynamics using limited resources. Therefore, employing UAVs in various usage scenarios requires well-designed planning in algorithmic approaches. In this paper, we provide a comprehensive review of recent learning-based algorithmic approaches. We consider possible reward functions and discuss the state-of-the-art algorithms for optimizing the reward functions, including Q-learning, deep Q-learning, multi-armed bandit (MAB), particle swarm optimization (PSO) and satisfaction-based learning algorithms. Unlike other survey papers, we focus on the methodological perspective of the optimization problem, which can be applicable to various UAV-assisted missions on a SAGIN using these algorithms. We simulate users and environments according to real-world scenarios and compare the learning-based and PSO-based methods in terms of throughput, load, fairness, computation time, etc. We also implement and evaluate the 2-dimensional (2D) and 3-dimensional (3D) variations of these algorithms to reflect different deployment cases. Our simulation suggests that the $3$D satisfaction-based learning algorithm outperforms the other approaches for various metrics in most cases. We discuss some open challenges at the end and our findings aim to provide design guidelines for algorithm selections while optimizing the deployment of UAV-assisted SAGINs.
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
高度动态的移动ad-hoc网络(MANET)仍然是开发和部署强大,高效和可扩展的路由协议的最具挑战性环境之一。在本文中,我们提出了DeepCQ +路由协议,以一种新颖的方式将新兴的多代理深度增强学习(Madrl)技术集成到现有的基于Q学习的路由协议及其变体中,并在各种拓扑结构中实现了持续更高的性能和移动配置。在保持基于Q学习的路由协议的整体协议结构的同时,DeepCQ +通过精心设计的Madrl代理替换静态配置的参数化阈值和手写规则,使得不需要这些参数的配置。广泛的模拟表明,与其基于Q学习的对应物相比,DeptCQ +产生的端到端吞吐量显着增加了端到端延迟(跳数)的明显劣化。在定性方面,也许更重要的是,Deepcq +在许多情况下维持了非常相似的性能提升,即在网络尺寸,移动条件和交通动态方面没有接受过培训。据我们所知,这是Madrl框架的第一次成功应用MANET路由问题,即使在训练有素的场景范围之外的环境中,即使在训练范围之外的环境中也能够高度的可扩展性和鲁棒性。这意味着我们的基于Marl的DeepCQ +设计解决方案显着提高了基于Q学习的CQ +基线方法的性能,以进行比较,并提高其实用性和解释性,因为现实世界的MANET环境可能会在训练范围的MANET场景之外变化。讨论了进一步提高性能和可扩展性的增益的额外技术。
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译