自主机器人结合了各种技能,形成越来越复杂的行为,称为任务。尽管这些技能通常以相对较低的抽象级别进行编程,但它们的协调是建筑分离的,并且经常以高级语言或框架表达。几十年来,州机器一直是首选的语言,但是最近,行为树的语言在机器人主义者中引起了人们的关注。行为树最初是为计算机游戏设计的,用于建模自主参与者,提供了基于树木的可扩展的使命表示,并受到支持支持模块化设计和代码的重复使用。但是,尽管使用了该语言的几种实现,但对现实世界中的用法和范围知之甚少。行为树提供的概念与传统语言(例如州机器)有何关系?应用程序中如何使用行为树和状态机概念?我们介绍了对行为树中关键语言概念的研究及其在现实世界机器人应用中的使用。我们识别行为树语言,并将其语义与机器人技术中最著名的行为建模语言进行比较。我们为使用这些语言的机器人应用程序挖掘开源存储库并分析此用法。我们发现两种行为建模语言在语言设计及其在开源项目中的用法之间的相似性方面,以满足机器人域的需求。我们为现实世界行为模型的数据集提供了贡献,希望激发社区使用和进一步开发这种语言,相关的工具和分析技术。
translated by 谷歌翻译
In training neural networks, batch normalization has many benefits, not all of them entirely understood. But it also has some drawbacks. Foremost is arguably memory consumption, as computing the batch statistics requires all instances within the batch to be processed simultaneously, whereas without batch normalization it would be possible to process them one by one while accumulating the weight gradients. Another drawback is that that distribution parameters (mean and standard deviation) are unlike all other model parameters in that they are not trained using gradient descent but require special treatment, complicating implementation. In this paper, I show a simple and straightforward way to address these issues. The idea, in short, is to add terms to the loss that, for each activation, cause the minimization of the negative log likelihood of a Gaussian distribution that is used to normalize the activation. Among other benefits, this will hopefully contribute to the democratization of AI research by means of lowering the hardware requirements for training larger models.
translated by 谷歌翻译
A learned system uses machine learning (ML) internally to improve performance. We can expect such systems to be vulnerable to some adversarial-ML attacks. Often, the learned component is shared between mutually-distrusting users or processes, much like microarchitectural resources such as caches, potentially giving rise to highly-realistic attacker models. However, compared to attacks on other ML-based systems, attackers face a level of indirection as they cannot interact directly with the learned model. Additionally, the difference between the attack surface of learned and non-learned versions of the same system is often subtle. These factors obfuscate the de-facto risks that the incorporation of ML carries. We analyze the root causes of potentially-increased attack surface in learned systems and develop a framework for identifying vulnerabilities that stem from the use of ML. We apply our framework to a broad set of learned systems under active development. To empirically validate the many vulnerabilities surfaced by our framework, we choose 3 of them and implement and evaluate exploits against prominent learned-system instances. We show that the use of ML caused leakage of past queries in a database, enabled a poisoning attack that causes exponential memory blowup in an index structure and crashes it in seconds, and enabled index users to snoop on each others' key distributions by timing queries over their own keys. We find that adversarial ML is a universal threat against learned systems, point to open research gaps in our understanding of learned-systems security, and conclude by discussing mitigations, while noting that data leakage is inherent in systems whose learned component is shared between multiple parties.
translated by 谷歌翻译
Recent diffusion-based AI art platforms are able to create impressive images from simple text descriptions. This makes them powerful tools for concept design in any discipline that requires creativity in visual design tasks. This is also true for early stages of architectural design with multiple stages of ideation, sketching and modelling. In this paper, we investigate how applicable diffusion-based models already are to these tasks. We research the applicability of the platforms Midjourney, DALL-E 2 and StableDiffusion to a series of common use cases in architectural design to determine which are already solvable or might soon be. We also analyze how they are already being used by analyzing a data set of 40 million Midjourney queries with NLP methods to extract common usage patterns. With this insights we derived a workflow to interior and exterior design that combines the strengths of the individual platforms.
translated by 谷歌翻译
Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.
translated by 谷歌翻译
Rowhammer is a serious security problem of contemporary dynamic random-access memory (DRAM) where reads or writes of bits can flip other bits. DRAM manufacturers add mitigations, but don't disclose details, making it difficult for customers to evaluate their efficacy. We present a tool, based on active learning, that automatically infers parameter of Rowhammer mitigations against synthetic models of modern DRAM.
translated by 谷歌翻译
Current technological advances open up new opportunities for bringing human-machine interaction to a new level of human-centered cooperation. In this context, a key issue is the semantic understanding of the environment in order to enable mobile robots more complex interactions and a facilitated communication with humans. Prerequisites are the vision-based registration of semantic objects and humans, where the latter are further analyzed for potential interaction partners. Despite significant research achievements, the reliable and fast registration of semantic information still remains a challenging task for mobile robots in real-world scenarios. In this paper, we present a vision-based system for mobile assistive robots to enable a semantic-aware environment perception without additional a-priori knowledge. We deploy our system on a mobile humanoid robot that enables us to test our methods in real-world applications.
translated by 谷歌翻译
在这项工作中,我们探讨了对物体在看不见的世界中同时本地化和映射中的使用,并提出了一个对象辅助系统(OA-Slam)。更确切地说,我们表明,与低级点相比,物体的主要好处在于它们的高级语义和歧视力。相反,要点比代表对象(Cuboid或椭圆形)的通用粗模型具有更好的空间定位精度。我们表明,将点和对象组合非常有趣,可以解决相机姿势恢复的问题。我们的主要贡献是:(1)我们使用高级对象地标提高了SLAM系统的重新定位能力; (2)我们构建了一个能够使用3D椭圆形识别,跟踪和重建对象的自动系统; (3)我们表明,基于对象的本地化可用于重新初始化或恢复相机跟踪。我们的全自动系统允许对象映射和增强姿势跟踪恢复,我们认为这可以极大地受益于AR社区。我们的实验表明,可以从经典方法失败的视点重新定位相机。我们证明,尽管跟踪损失损失,但这种本地化使SLAM系统仍可以继续工作,而这种损失可能会经常发生在不理会的用户中。我们的代码和测试数据在gitlab.inria.fr/tangram/oa-slam上发布。
translated by 谷歌翻译
多发性硬化症(MS)是一种慢性进行性神经系统疾病,其特征是大脑白质病变的发展。相对于其他MRI模态,T2流体体面的反转恢复(FLAIR)脑磁共振成像(MRI)提供了MS病变的卓越可视化和表征。 MS中的纵向脑感状MRI,涉及随着时间的推移重复对患者进行成像,为临床医生提供了有用的信息,以监测疾病进展。仅在有限的应用中尝试预测未来的整个大脑MRI检查,例如在有限的应用中,例如在阿尔茨海默氏病中的健康衰老和结构性变性。在本文中,我们为MS Flair图像合成的深度学习体系结构提供了新的修改,以支持以灵活的连续方式支持纵向图像的预测。这是通过学习的转移卷积来实现的,该卷积将建模时间作为空间分布的阵列,在不同的空间位置具有可变的时间特性。因此,这种方法理论上可以对空间特定的时间依赖性大脑发育进行建模,从而支持在适当的物理位置(例如MS脑损伤部位)建模更快的生长。这种方法还支持临床医生用户定义预测考试应针对的未来。对未来成像的准确预测可以为临床医生提供潜在的患者预后,这可能有助于早期治疗和更好的预后。已经开发了四个不同的深度学习体系结构。 ISBI2015纵向MS数据集用于验证和比较我们提出的方法。结果表明,修改后的ACGAN可实现最佳性能并降低模型准确性的可变性。
translated by 谷歌翻译
有限的公开数据可以支持恶意软件分析技术的研究。特别是,几乎没有由杜鹃/斗篷等丰富的沙盒生成的公开可用数据集。使用动态沙箱的好处是对目标机中文件执行的逼真模拟并获得该执行日志。机器可以被恶意软件感染,因此很有可能在执行日志中捕获恶意行为,从而使研究人员可以详细研究这种行为。尽管随后对日志信息的分析在工业网络安全后端被广泛介绍,但据我们所知,仅在学术界投入了有限的努力,以使用最先进的技术提高此类日志分析功能。我们使此示例数据集可用来支持设计新的机器学习方法以进行恶意软件检测,尤其是用于自动检测通用恶意行为。该数据集是在Avast软件和捷克技术大学-AI中心(AIC)之间合作的。
translated by 谷歌翻译