Current technological advances open up new opportunities for bringing human-machine interaction to a new level of human-centered cooperation. In this context, a key issue is the semantic understanding of the environment in order to enable mobile robots more complex interactions and a facilitated communication with humans. Prerequisites are the vision-based registration of semantic objects and humans, where the latter are further analyzed for potential interaction partners. Despite significant research achievements, the reliable and fast registration of semantic information still remains a challenging task for mobile robots in real-world scenarios. In this paper, we present a vision-based system for mobile assistive robots to enable a semantic-aware environment perception without additional a-priori knowledge. We deploy our system on a mobile humanoid robot that enables us to test our methods in real-world applications.
translated by 谷歌翻译
视觉同时定位和映射(VSLAM)在计算机视觉和机器人社区中取得了巨大进展,并已成功用于许多领域,例如自主机器人导航和AR/VR。但是,VSLAM无法在动态和复杂的环境中实现良好的定位。许多出版物报告说,通过与VSLAM结合语义信息,语义VSLAM系统具有近年来解决上述问题的能力。然而,尚无关于语义VSLAM的全面调查。为了填补空白,本文首先回顾了语义VSLAM的发展,并明确着眼于其优势和差异。其次,我们探讨了语义VSLAM的三个主要问题:语义信息的提取和关联,语义信息的应用以及语义VSLAM的优势。然后,我们收集和分析已广泛用于语义VSLAM系统的当前最新SLAM数据集。最后,我们讨论未来的方向,该方向将为语义VSLAM的未来发展提供蓝图。
translated by 谷歌翻译
Simultaneous Localization & Mapping (SLAM) is the process of building a mutual relationship between localization and mapping of the subject in its surrounding environment. With the help of different sensors, various types of SLAM systems have developed to deal with the problem of building the relationship between localization and mapping. A limitation in the SLAM process is the lack of consideration of dynamic objects in the mapping of the environment. We propose the Dynamic Object Tracking SLAM (DyOb-SLAM), which is a Visual SLAM system that can localize and map the surrounding dynamic objects in the environment as well as track the dynamic objects in each frame. With the help of a neural network and a dense optical flow algorithm, dynamic objects and static objects in an environment can be differentiated. DyOb-SLAM creates two separate maps for both static and dynamic contents. For the static features, a sparse map is obtained. For the dynamic contents, a trajectory global map is created as output. As a result, a frame to frame real-time based dynamic object tracking system is obtained. With the pose calculation of the dynamic objects and camera, DyOb-SLAM can estimate the speed of the dynamic objects with time. The performance of DyOb-SLAM is observed by comparing it with a similar Visual SLAM system, VDO-SLAM and the performance is measured by calculating the camera and object pose errors as well as the object speed error.
translated by 谷歌翻译
在这项工作中,我们探讨了对物体在看不见的世界中同时本地化和映射中的使用,并提出了一个对象辅助系统(OA-Slam)。更确切地说,我们表明,与低级点相比,物体的主要好处在于它们的高级语义和歧视力。相反,要点比代表对象(Cuboid或椭圆形)的通用粗模型具有更好的空间定位精度。我们表明,将点和对象组合非常有趣,可以解决相机姿势恢复的问题。我们的主要贡献是:(1)我们使用高级对象地标提高了SLAM系统的重新定位能力; (2)我们构建了一个能够使用3D椭圆形识别,跟踪和重建对象的自动系统; (3)我们表明,基于对象的本地化可用于重新初始化或恢复相机跟踪。我们的全自动系统允许对象映射和增强姿势跟踪恢复,我们认为这可以极大地受益于AR社区。我们的实验表明,可以从经典方法失败的视点重新定位相机。我们证明,尽管跟踪损失损失,但这种本地化使SLAM系统仍可以继续工作,而这种损失可能会经常发生在不理会的用户中。我们的代码和测试数据在gitlab.inria.fr/tangram/oa-slam上发布。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
自治机器人目前是最受欢迎的人工智能问题之一,在过去十年中,从自动驾驶汽车和人形系统到交付机器人和无人机,这是一项最受欢迎的智能问题。部分问题是获得一个机器人,以模仿人类的感知,我们的视觉感,用诸如神经网络等数学模型用相机和大脑的眼睛替换眼睛。开发一个能够在没有人为干预的情况下驾驶汽车的AI和一个小型机器人在城市中递送包裹可能看起来像不同的问题,因此来自感知和视觉的观点来看,这两个问题都有几种相似之处。我们目前的主要解决方案通过使用计算机视觉技术,机器学习和各种算法来实现对环境感知的关注,使机器人理解环境或场景,移动,调整其轨迹并执行其任务(维护,探索,等。)无需人为干预。在这项工作中,我们从头开始开发一个小型自动车辆,能够仅使用视觉信息理解场景,通过工业环境导航,检测人员和障碍,或执行简单的维护任务。我们审查了基本问题的最先进问题,并证明了小规模采用的许多方法类似于来自特斯拉或Lyft等公司的真正自动驾驶汽车中使用的方法。最后,我们讨论了当前的机器人和自主驾驶状态以及我们在这一领域找到的技术和道德限制。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
尽管在移动机器人技术中常用的2D占用图可以在室内环境中进行安全导航,但为了让机器人理解和与其环境互动及其代表3D几何和语义环境信息的居民。语义信息对于有效解释人类归因于空间不同部分的含义至关重要,而3D几何形状对于安全性和高级理解很重要。我们提出了一条管道,该管道可以生成用于机器人应用的室内环境的多层表示。提出的表示形式包括3D度量语义层,2D占用层和对象实例层,其中已知对象被通过新型模型匹配方法获得的近似模型代替。将度量层和对象实例层组合在一起以形成对环境的增强表示形式。实验表明,当任务完成场景中对象的一部分时,提出的形状匹配方法优于最先进的深度学习方法。如F1得分分析所示,管道性能从模拟到现实世界都很好,使用蒙版R-CNN作为主要瓶颈具有语义分割精度。最后,我们还在真正的机器人平台上演示了多层地图如何用于提高导航安全性。
translated by 谷歌翻译
完全自主移动机器人的现实部署取决于能够处理动态环境的强大的大满贯(同时本地化和映射)系统,其中对象在机器人的前面移动以及不断变化的环境,在此之后移动或更换对象。机器人已经绘制了现场。本文介绍了更换式SLAM,这是一种在动态和不断变化的环境中强大的视觉猛烈抨击的方法。这是通过使用与长期数据关联算法结合的贝叶斯过滤器来实现的。此外,它采用了一种有效的算法,用于基于对象检测的动态关键点过滤,该对象检测正确识别了不动态的边界框中的特征,从而阻止了可能导致轨道丢失的功能的耗竭。此外,开发了一个新的数据集,其中包含RGB-D数据,专门针对评估对象级别的变化环境,称为PUC-USP数据集。使用移动机器人,RGB-D摄像头和运动捕获系统创建了六个序列。这些序列旨在捕获可能导致跟踪故障或地图损坏的不同情况。据我们所知,更换 - 峰是第一个对动态和不断变化的环境既有坚固耐用的视觉大满贯系统,又不假设给定的相机姿势或已知地图,也能够实时运行。使用基准数据集对所提出的方法进行了评估,并将其与其他最先进的方法进行了比较,证明是高度准确的。
translated by 谷歌翻译
近年来我们目睹了巨大进展的动机,本文提出了对协作同时定位和映射(C-SLAM)主题的科学文献的调查,也称为多机器人猛击。随着地平线上的自动驾驶车队和工业应用中的多机器人系统的兴起,我们相信合作猛击将很快成为未来机器人应用的基石。在本调查中,我们介绍了C-Slam的基本概念,并呈现了彻底的文献综述。我们还概述了C-Slam在鲁棒性,通信和资源管理方面的主要挑战和限制。我们通过探索该地区目前的趋势和有前途的研究途径得出结论。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
实时机器人掌握,支持随后的精确反对操作任务,是高级高级自治系统的优先目标。然而,尚未找到这样一种可以用时间效率进行充分准确的掌握的算法。本文提出了一种新的方法,其具有2阶段方法,它使用深神经网络结合快速的2D对象识别,以及基于点对特征框架的随后的精确和快速的6D姿态估计来形成实时3D对象识别和抓握解决方案能够多对象类场景。所提出的解决方案有可能在实时应用上稳健地进行,需要效率和准确性。为了验证我们的方法,我们进行了广泛且彻底的实验,涉及我们自己的数据集的费力准备。实验结果表明,该方法在5CM5DEG度量标准中的精度97.37%,平均距离度量分数99.37%。实验结果显示了通过使用该方法的总体62%的相对改善(5cm5deg度量)和52.48%(平均距离度量)。此外,姿势估计执行也显示出运行时间的平均改善47.6%。最后,为了说明系统在实时操作中的整体效率,进行了一个拾取和放置的机器人实验,并显示了90%的准确度的令人信服的成功率。此实验视频可在https://sites.google.com/view/dl-ppf6dpose/上获得。
translated by 谷歌翻译
Integration of multiple sensor modalities and deep learning into Simultaneous Localization And Mapping (SLAM) systems are areas of significant interest in current research. Multi-modality is a stepping stone towards achieving robustness in challenging environments and interoperability of heterogeneous multi-robot systems with varying sensor setups. With maplab 2.0, we provide a versatile open-source platform that facilitates developing, testing, and integrating new modules and features into a fully-fledged SLAM system. Through extensive experiments, we show that maplab 2.0's accuracy is comparable to the state-of-the-art on the HILTI 2021 benchmark. Additionally, we showcase the flexibility of our system with three use cases: i) large-scale (approx. 10 km) multi-robot multi-session (23 missions) mapping, ii) integration of non-visual landmarks, and iii) incorporating a semantic object-based loop closure module into the mapping framework. The code is available open-source at https://github.com/ethz-asl/maplab.
translated by 谷歌翻译
使用移动操纵器来整理家庭环境,在机器人技术中提出了各种挑战,例如适应大型现实世界的环境变化,以及在人类面前的安全和强大的部署。2021年9月举行的全球竞赛,对真正的家庭环境中的整理任务进行了基准测试,重要的是,对全面的系统性能进行了测试。对于此挑战,我们开发了整个家庭服务机器人系统,该机器人系统利用数据驱动的方法来适应众多的方法在执行过程中发生的边缘案例,而不是经典的手动预编程解决方案。在本文中,我们描述了提出的机器人系统的核心成分,包括视觉识别,对象操纵和运动计划。我们的机器人系统赢得了二等奖,验证了数据驱动的机器人系统在家庭环境中移动操作的有效性和潜力。
translated by 谷歌翻译
主动映射的传统方法专注于构建几何图。但是,对于大多数真实世界应用程序,可行的信息与环境中的语义有意义的对象有关。我们提出了一种用于主动度量语义映射问题的方法,该方法使多个异质机器人能够协作构建环境地图。这些机器人积极探索以最大程度地减少语义(对象分类)和几何(对象建模)信息中的不确定性。我们使用信息丰富但稀疏的对象模型表示环境,每个模型由基本形状和语义类标签组成,并使用大量现实世界数据在经验上表征不确定性。鉴于先前的地图,我们使用此模型为每个机器人选择动作以最大程度地减少不确定性。通过多种现实世界环境中的多机器人实验证明了我们的算法的性能。所提出的框架适用于广泛的现实问题,例如精确农业,基础设施检查和工厂中的资产映射。
translated by 谷歌翻译
Object SLAM使用其他语义信息来检测和映射场景中的对象,以提高系统的感知和地图表示功能。四边形和立方体通常用于表示对象,但是它们的单个形状限制了对象图的准确性,从而影响下游任务的应用。在本文中,我们将具有形状参数的超Quadicrics(SQ)引入猛击中以表示对象,并提出了一种单独的参数估计方法,该方法可以准确估算对象姿势并适应不同的形状。此外,我们提出了一种轻巧的数据关联策略,用于将多个视图中的语义观察与对象地标正确关联。我们通过实时性能实施一个单眼语义大满贯系统,并在公共数据集上进行全面的实验。结果表明,我们的方法能够构建准确的对象映射,并且在对象表示中具有优势。代码将在接受后发布。
translated by 谷歌翻译
摄像机是自动化驱动系统中的主要传感器。它们提供高信息密度,并对检测为人类视野提供的道路基础设施线索最优。环绕式摄像机系统通常包括具有190 {\ DEG} +视野的四个鱼眼相机,覆盖在车辆周围的整个360 {\ DEG}集中在近场传感上。它们是低速,高精度和近距离传感应用的主要传感器,如自动停车,交通堵塞援助和低速应急制动。在这项工作中,我们提供了对这种视觉系统的详细调查,在可以分解为四个模块化组件的架构中,设置调查即可识别,重建,重建和重组。我们共同称之为4R架构。我们讨论每个组件如何完成特定方面,并提供一个位置论证,即它们可以协同组织以形成用于低速自动化的完整感知系统。我们通过呈现来自以前的作品的结果,并通过向此类系统提出架构提案来支持此参数。定性结果在视频中呈现在HTTPS://youtu.be/ae8bcof7777uy中。
translated by 谷歌翻译
同时本地化和映射(SLAM)是自动移动机器人中的基本问题之一,在该机器人需要重建以前看不见的环境的同时,同时在地图上进行了本身。特别是,Visual-Slam使用移动机器人中的各种传感器来收集和感测地图的表示。传统上,基于几何模型的技术被用来解决大满贯问题,在充满挑战的环境下,该问题往往容易出错。诸如深度学习技术之类的计算机视觉方面的最新进展提供了一种数据驱动的方法来解决视觉范围问题。这篇综述总结了使用各种基于学习的方法的视觉 - 峰领域的最新进展。我们首先提供了基于几何模型的方法的简洁概述,然后进行有关SLAM当前范式的技术评论。然后,我们介绍了从移动机器人那里收集感官输入并执行场景理解的各种基于学习的方法。讨论并将基于深度学习的语义理解中的当前范式讨论并置于视觉峰的背景下。最后,我们讨论了在视觉 - 峰中基于学习的方法方向上的挑战和进一步的机会。
translated by 谷歌翻译
在远程多机器人自主探索任务(例如搜索和响应)中,语义对象映射在不确定的,感知下降的环境中是重要且具有挑战性的。在此类任务期间,需要高度召回,避免缺少真正的目标对象,而高精度对于避免在假阳性上浪费宝贵的操作时间也至关重要。鉴于视觉感知算法的最新进展,前者在很大程度上可以自主解决,但是如果没有人类操作员的监督,后者很难解决。但是,诸如任务时间,计算要求,网络网络带宽等诸如操作限制可能使操作员的任务变得不可行,除非得到适当管理。我们提出了早期的召回,较晚的精度(Earlap)语义对象映射管道,以解决此问题。 Earlap在DARPA Subterranean Challenge中被Team Costar使用,在那里成功发现了机器人团队遇到的所有工件。我们将在各种数据集上讨论Earlap的这些结果和性能。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译