仇恨语音在线的检测已成为一项重要的任务,因为伤害,淫秽和侮辱性内容等冒犯性语言可能会危害边缘化的人或团体。本文介绍了Indo-European语言中的仇恨语音和冒犯内容识别的共同任务任务1A和1B的任务1A和1B的实验和结果。在整个竞争中,对各种子特派团评估了不同的自然语言处理模型的成功。我们通过竞争对手基于单词和字符级别的复发神经网络测试了不同的模型,并通过竞争对手基于提供的数据集进行了学习方法。在已经用于实验的测试模型中,基于转移学习的模型在两个子任务中获得了最佳结果。
translated by 谷歌翻译
仇恨言论被认为是目前轰炸在线社交媒体的主要问题之一。已经显示重复和重复的仇恨言论,为目标用户创造生理效应。因此,应在这些平台上解决其所有形式的仇恨言论,以保持健康。在本文中,我们探讨了在火灾2021的英语和印度 - 雅典语言中检测仇恨语音和冒犯内容的几个基于变压器的机器学习模型。我们探索了MBBERT,XLMR-LARG,XLMR-Base等多种型号“超级马里奥”。我们的型号在Code-Mixed数据集(宏F1:0.7107)中进行了第二个位置,在印地语两班分类(宏F1:0.7797)中,英语四类四级别(宏F1:0.8006)和英语中的第4位两级类别(宏F1:0.6447)。
translated by 谷歌翻译
在线仇恨是许多社交媒体平台的日益关注。为解决此问题,不同的社交媒体平台为此类内容引入了审核策略。他们还聘请了可以检查职位违反审议政策的职位并采取适当行动。辱骂语言研究领域的院士也进行各种研究以更好地检测此类内容。虽然在英语中有广泛的辱骂语言检测,但在这场火灾中,在印度,乌尔都语等低资源语言中有一个滥用语言检测的空格。在URDU中提出滥用语言检测数据集以及威胁性语言检测。在本文中,我们探索了XGBoost,LGBM,基于M-BERT的M-BERT模型的多种机器学习模型,用于基于共享任务的URDU滥用和威胁的内容检测。我们观察了在阿拉伯语中滥用语言数据集的变压器模型有助于获得最佳性能。我们的模型首先是滥用和威胁性的内容检测,分别使用0.88和0.54的F1Scoreof。
translated by 谷歌翻译
通过匿名和可访问性,社交媒体平台促进了仇恨言论的扩散,提示在开发自动方法以识别这些文本时提高研究。本文探讨了使用各种深度神经网络模型架构(如长短期内存(LSTM)和卷积神经网络(CNN)的文本中性别歧视分类。这些网络与来自变压器(BERT)和Distilbert模型的双向编码器表示形式的传输学习一起使用,以及数据增强,以在社交中的性别歧视识别中对推文和GAB的数据集进行二进制和多种性别歧视分类Iberlef 2021中的网络(存在)任务。看到模型与竞争对手的比较,使用BERT和多滤波器CNN模型进行了最佳性能。数据增强进一步提高了多级分类任务的结果。本文还探讨了模型所做的错误,并讨论了由于标签的主观性和社交媒体中使用的自然语言的复杂性而自动对性别歧视的难度。
translated by 谷歌翻译
为了解决检测到令人反感的评论/帖子的难题,这些评论/帖子具有很多非正式的,非结构化,错误的和码混合,我们在本研究论文中介绍了两种发明方法。社交媒体平台上的攻击性评论/帖子,可以影响个人,团体或未成年人。为了对两个受欢迎的Dravidian语言,泰米尔和马拉雅拉姆分类,作为哈索克的一部分 - Dravidiancodemix Fire 2021共享任务,我们采用了两个基于变压器的原型,该原型成功地站在前8名以获得所有任务。可以查看和使用我们方法的代码。
translated by 谷歌翻译
随着社交媒体平台影响的增长,滥用的影响变得越来越有影响力。自动检测威胁和滥用语言的重要性不能高估。但是,大多数现有的研究和最先进的方法都以英语为目标语言,对低资产品语言的工作有限。在本文中,我们介绍了乌尔都语的两项滥用和威胁性语言检测的任务,该任务在全球范围内拥有超过1.7亿扬声器。两者都被视为二进制分类任务,其中需要参与系统将乌尔都语中的推文分类为两个类别,即:(i)第一个任务的滥用和不滥用,以及(ii)第二次威胁和不威胁。我们提供两个手动注释的数据集,其中包含标有(i)滥用和非虐待的推文,以及(ii)威胁和无威胁。滥用数据集在火车零件中包含2400个注释的推文,测试部分中包含1100个注释的推文。威胁数据集在火车部分中包含6000个注释的推文,测试部分中包含3950个注释的推文。我们还为这两个任务提供了逻辑回归和基于BERT的基线分类器。在这项共同的任务中,来自六个国家的21个团队注册参加了参与(印度,巴基斯坦,中国,马来西亚,阿拉伯联合酋长国和台湾),有10个团队提交了子任务A的奔跑,这是虐待语言检测,9个团队提交了他们的奔跑对于正在威胁语言检测的子任务B,七个团队提交了技术报告。最佳性能系统达到子任务A的F1得分值为0.880,子任务为0.545。对于两个子任务,基于M-Bert的变压器模型都表现出最佳性能。
translated by 谷歌翻译
在大量人员中,在线社交媒体(OSMS)消费的广泛上升构成了遏制这些平台上仇恨内容的传播的关键问题。随着多种语言的效果越来越多,检测和表征仇恨的任务变得更加复杂。代码混合文本的微妙变化以及切换脚本仅增加了复杂性。本文介绍了哈索克2021多语种推特仇恨语音检测挑战的解决方案,由Team Precog IIIT Hyderabad。我们采用基于多语言变压器的方法,并为所有6个子任务描述了我们的架构作为挑战的一部分。在参加所有子特设券的6支球队中,我们的提交总体排名第3。
translated by 谷歌翻译
仇恨言论等攻击性内容的广泛构成了越来越多的社会问题。 AI工具是支持在线平台的审核过程所必需的。为了评估这些识别工具,需要与不同语言的数据集进行连续实验。 HASOC轨道(仇恨语音和冒犯性内容识别)专用于为此目的开发基准数据。本文介绍了英语,印地语和马拉地赛的Hasoc Subtrack。数据集由Twitter组装。此子系统有两个子任务。任务A是为所有三种语言提供的二进制分类问题(仇恨而非冒犯)。任务B是三个课程(仇恨)仇恨言论,令人攻击和亵渎为英语和印地语提供的细粒度分类问题。总体而言,652名队伍提交了652次。任务A最佳分类算法的性能分别为Marathi,印地语和英语的0.91,0.78和0.83尺寸。此概述介绍了任务和数据开发以及详细结果。提交竞争的系统应用了各种技术。最好的表演算法主要是变压器架构的变种。
translated by 谷歌翻译
情绪分析是最基本的NLP任务,用于确定文本数据的极性。在多语言文本领域也有很多工作。仍然讨厌和令人反感的语音检测面临着挑战,这是由于数据的可用性不足,特别是印度和马拉地赛等印度语言。在这项工作中,我们考虑了印地语和马拉地养文本的仇恨和令人反感的语音检测。使用艺术的深度学习方法的状态制定了该问题作为文本分类任务。我们探讨了CNN,LSTM等不同的深度学习架构,以及多语言伯爵,烟草和单晶罗伯塔等伯特的变化。基于CNN和LSTM的基本模型将使用快文文本嵌入式增强。我们使用HASOC 2021 HINDI和MARATHI讨论语音数据集来比较这些算法。 Marathi DataSet由二进制标签和后印度数据集组成,包括二进制和更精细的粗糙标签。我们表明,基于变压器的模型表现了最佳甚至基本型号以及FastText Embeddings的基本模型具有竞争性能。此外,通过普通的超参数调谐,基本模型比细粒度的Hindi数据集上的基于BERT的模型更好。
translated by 谷歌翻译
为了防止青年自杀,社交媒体平台受到了研究人员的广泛关注。一些研究应用机器学习或基于深度学习的文本分类方法来对包含自杀风险的社交媒体帖子进行分类。本文复制了基于社交媒体的自杀性检测/预测模型。我们评估了使用多个数据集和不同最先进的深度学习模型(RNN-,CNN-和基于注意力的模型)检测自杀构想的可行性。使用两个自杀性评估数据集,我们通过定量和定性方式评估了28种输入嵌入的组合和4种常用的深度学习模型和5种预处理的语言模型。我们的复制研究证实,深度学习总体上可以很好地适用于基于社交媒体的自杀性检测,但这在很大程度上取决于数据集的质量。
translated by 谷歌翻译
在最近的过去,社交媒体平台帮助人们连接和沟通到更广泛的受众。但这也导致了网络欺凌的激烈增加。要检测和遏制仇恨言论,以保持社交媒体平台的理智。此外,在这些平台上经常使用包含多种语言的代码混合文本。因此,我们提出了从刮擦Twitter的代码混合文本中的仇恨语音检测自动化技术。我们专注于代码混合英语 - 印地文文本和基于变压器的方法。虽然常规方法独立分析了文本,但我们还以父推文的形式使用内容文本。我们尝试在单编码器和双编码器设置中评估多语言BERT和ANDIP-BERT的性能。第一种方法是使用分隔符令牌连接目标文本和上下文文本,并从BERT模型获取单个表示。第二种方法独立地使用双BERT编码器独立地编码两个文本,并且对应的表示平均。我们表明使用独立表示的双编码器方法产生更好的性能。我们还采用了简单的集合方法来进一步提高性能。使用这些方法,我们在HASOC 2021CCL代码混合数据集上报告了最佳F1分数为73.07%。
translated by 谷歌翻译
在网络和社交媒体上生成的大量数据增加了检测在线仇恨言论的需求。检测仇恨言论将减少它们对他人的负面影响和影响。在自然语言处理(NLP)域中的许多努力旨在宣传仇恨言论或检测特定的仇恨言论,如宗教,种族,性别或性取向。讨厌的社区倾向于使用缩写,故意拼写错误和他们的沟通中的编码词来逃避检测,增加了讨厌语音检测任务的更多挑战。因此,词表示将在检测仇恨言论中发挥越来越关的作用。本文研究了利用基于双向LSTM的深度模型中嵌入的域特定词语的可行性,以自动检测/分类仇恨语音。此外,我们调查转移学习语言模型(BERT)对仇恨语音问题作为二进制分类任务。实验表明,与双向LSTM基于LSTM的深层模型嵌入的域特异性词嵌入了93%的F1分数,而BERT在可用仇恨语音数据集中的组合平衡数据集上达到了高达96%的F1分数。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
鉴于当前全球的社交距离限制,大多数人现在使用社交媒体作为其主要交流媒介。因此,数百万患有精神疾病的人被孤立了,他们无法亲自获得帮助。他们越来越依赖在线场地,以表达自己并寻求有关处理精神障碍的建议。根据世界卫生组织(WHO)的说法,大约有4.5亿人受到影响。精神疾病(例如抑郁,焦虑等)非常普遍,并影响了个体的身体健康。最近提出了人工智能(AI)方法,以帮助基于患者的真实信息(例如,医疗记录,行为数据,社交媒体利用等),包括精神病医生和心理学家在内的心理健康提供者。 AI创新表明,在从计算机视觉到医疗保健的众多现实应用应用程序中,主要执行。这项研究分析了REDDIT平台上的非结构化用户数据,并分类了五种常见的精神疾病:抑郁,焦虑,双相情感障碍,ADHD和PTSD。我们培训了传统的机器学习,深度学习和转移学习多级模型,以检测个人的精神障碍。这项工作将通过自动化检测过程并告知适当当局需要紧急援助的人来使公共卫生系统受益。
translated by 谷歌翻译
仇恨言论的大规模传播,针对特定群体的仇恨内容,是一个批评社会重要性的问题。仇恨语音检测的自动化方法通常采用最先进的深度学习(DL)的文本分类器 - 非常大的预训练的神经语言模型超过1亿个参数,将这些模型适应仇恨语音检测的任务相关标记的数据集。不幸的是,只有许多标记的数据集有限的尺寸可用于此目的。我们为推进这种事态的高潜力进行了几项贡献。我们呈现HyperNetworks用于仇恨语音检测,这是一种特殊的DL网络,其权重由小型辅助网络调节。这些架构在字符级运行,而不是字级,并且与流行的DL分类器相比,几个较小的顺序大小。我们进一步表明,在命名为IT数据增强的过程中使用大量自动生成的示例的培训讨厌检测分类器通常是有益的,但这种做法尤其提高了所提出的HyperNetworks的性能。事实上,我们实现了比艺术最新的语言模型相当或更好的性能,这些模型是使用这种方法的预先训练的和数量级,与使用五个公共仇恨语音数据集进行评估。
translated by 谷歌翻译
Automated offensive language detection is essential in combating the spread of hate speech, particularly in social media. This paper describes our work on Offensive Language Identification in low resource Indic language Marathi. The problem is formulated as a text classification task to identify a tweet as offensive or non-offensive. We evaluate different mono-lingual and multi-lingual BERT models on this classification task, focusing on BERT models pre-trained with social media datasets. We compare the performance of MuRIL, MahaTweetBERT, MahaTweetBERT-Hateful, and MahaBERT on the HASOC 2022 test set. We also explore external data augmentation from other existing Marathi hate speech corpus HASOC 2021 and L3Cube-MahaHate. The MahaTweetBERT, a BERT model, pre-trained on Marathi tweets when fine-tuned on the combined dataset (HASOC 2021 + HASOC 2022 + MahaHate), outperforms all models with an F1 score of 98.43 on the HASOC 2022 test set. With this, we also provide a new state-of-the-art result on HASOC 2022 / MOLD v2 test set.
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
BERT,ROBERTA或GPT-3等复杂的基于注意力的语言模型的外观已允许在许多场景中解决高度复杂的任务。但是,当应用于特定域时,这些模型会遇到相当大的困难。诸如Twitter之类的社交网络就是这种情况,Twitter是一种不断变化的信息流,以非正式和复杂的语言编写的信息流,鉴于人类的重要作用,每个信息都需要仔细评估,即使人类也需要理解。通过自然语言处理解决该领域的任务涉及严重的挑战。当将强大的最先进的多语言模型应用于这种情况下,特定语言的细微差别用来迷失翻译。为了面对这些挑战,我们提出了\ textbf {bertuit},这是迄今为止针对西班牙语提出的较大变压器,使用Roberta Optimization进行了230m西班牙推文的大规模数据集进行了预培训。我们的动机是提供一个强大的资源,以更好地了解西班牙Twitter,并用于专注于该社交网络的应用程序,特别强调致力于解决该平台中错误信息传播的解决方案。对Bertuit进行了多个任务评估,并与M-Bert,XLM-Roberta和XLM-T进行了比较,该任务非常具有竞争性的多语言变压器。在这种情况下,使用应用程序显示了我们方法的实用性:一种可视化骗局和分析作者群体传播虚假信息的零击方法。错误的信息在英语以外的其他语言等平台上疯狂地传播,这意味着在英语说话之外转移时,变形金刚的性能可能会受到影响。
translated by 谷歌翻译
Numerous machine learning (ML) and deep learning (DL)-based approaches have been proposed to utilize textual data from social media for anti-social behavior analysis like cyberbullying, fake news detection, and identification of hate speech mainly for highly-resourced languages such as English. However, despite having a lot of diversity and millions of native speakers, some languages like Bengali are under-resourced, which is due to a lack of computational resources for natural language processing (NLP). Similar to other languages, Bengali social media contents also include images along with texts (e.g., multimodal memes are posted by embedding short texts into images on Facebook). Therefore, only the textual data is not enough to judge them since images might give extra context to make a proper judgement. This paper is about hate speech detection from multimodal Bengali memes and texts. We prepared the only multimodal hate speech dataset for-a-kind of problem for Bengali, which we use to train state-of-the-art neural architectures (e.g., Bi-LSTM/Conv-LSTM with word embeddings, ConvNets + pre-trained language models, e.g., monolingual Bangla BERT, multilingual BERT-cased/uncased, and XLM-RoBERTa) to jointly analyze textual and visual information for hate speech detection. Conv-LSTM and XLM-RoBERTa models performed best for texts, yielding F1 scores of 0.78 and 0.82, respectively. As of memes, ResNet-152 and DenseNet-161 models yield F1 scores of 0.78 and 0.79, respectively. As for multimodal fusion, XLM-RoBERTa + DenseNet-161 performed the best, yielding an F1 score of 0.83. Our study suggests that text modality is most useful for hate speech detection, while memes are moderately useful.
translated by 谷歌翻译
从语言学习者到残疾人,文本可读性评估对不同目标人士有广泛的应用。网络上文本内容生产的快速速度使得如果没有机器学习和自然语言处理技术的好处,就无法测量文本复杂性。尽管各种研究涉及近年来英语文本的可读性评估,但仍有改进其他语言的模型的空间。在本文中,我们提出了一种基于转移学习的德语文本评估文本复杂性评估的新模型。我们的结果表明,该模型比从输入文本中提取的语言特征优于更多经典的解决方案。最佳模型是基于BERT预训练的语言模型,达到了均方根误差(RMSE)为0.483。
translated by 谷歌翻译