鉴于当前全球的社交距离限制,大多数人现在使用社交媒体作为其主要交流媒介。因此,数百万患有精神疾病的人被孤立了,他们无法亲自获得帮助。他们越来越依赖在线场地,以表达自己并寻求有关处理精神障碍的建议。根据世界卫生组织(WHO)的说法,大约有4.5亿人受到影响。精神疾病(例如抑郁,焦虑等)非常普遍,并影响了个体的身体健康。最近提出了人工智能(AI)方法,以帮助基于患者的真实信息(例如,医疗记录,行为数据,社交媒体利用等),包括精神病医生和心理学家在内的心理健康提供者。 AI创新表明,在从计算机视觉到医疗保健的众多现实应用应用程序中,主要执行。这项研究分析了REDDIT平台上的非结构化用户数据,并分类了五种常见的精神疾病:抑郁,焦虑,双相情感障碍,ADHD和PTSD。我们培训了传统的机器学习,深度学习和转移学习多级模型,以检测个人的精神障碍。这项工作将通过自动化检测过程并告知适当当局需要紧急援助的人来使公共卫生系统受益。
translated by 谷歌翻译
In recent years, there has been a surge of interest in research on automatic mental health detection (MHD) from social media data leveraging advances in natural language processing and machine learning techniques. While significant progress has been achieved in this interdisciplinary research area, the vast majority of work has treated MHD as a binary classification task. The multiclass classification setup is, however, essential if we are to uncover the subtle differences among the statistical patterns of language use associated with particular mental health conditions. Here, we report on experiments aimed at predicting six conditions (anxiety, attention deficit hyperactivity disorder, bipolar disorder, post-traumatic stress disorder, depression, and psychological stress) from Reddit social media posts. We explore and compare the performance of hybrid and ensemble models leveraging transformer-based architectures (BERT and RoBERTa) and BiLSTM neural networks trained on within-text distributions of a diverse set of linguistic features. This set encompasses measures of syntactic complexity, lexical sophistication and diversity, readability, and register-specific ngram frequencies, as well as sentiment and emotion lexicons. In addition, we conduct feature ablation experiments to investigate which types of features are most indicative of particular mental health conditions.
translated by 谷歌翻译
为了防止青年自杀,社交媒体平台受到了研究人员的广泛关注。一些研究应用机器学习或基于深度学习的文本分类方法来对包含自杀风险的社交媒体帖子进行分类。本文复制了基于社交媒体的自杀性检测/预测模型。我们评估了使用多个数据集和不同最先进的深度学习模型(RNN-,CNN-和基于注意力的模型)检测自杀构想的可行性。使用两个自杀性评估数据集,我们通过定量和定性方式评估了28种输入嵌入的组合和4种常用的深度学习模型和5种预处理的语言模型。我们的复制研究证实,深度学习总体上可以很好地适用于基于社交媒体的自杀性检测,但这在很大程度上取决于数据集的质量。
translated by 谷歌翻译
讽刺可以被定义为说或写讽刺与一个人真正想表达的相反,通常是为了侮辱,刺激或娱乐某人。由于文本数据中讽刺性的性质晦涩难懂,因此检测到情感分析研究社区的困难和非常感兴趣。尽管讽刺检测的研究跨越了十多年,但最近已经取得了一些重大进步,包括在多模式环境中采用了无监督的预训练的预训练的变压器,并整合了环境以识别讽刺。在这项研究中,我们旨在简要概述英语计算讽刺研究的最新进步和趋势。我们描述了与讽刺有关的相关数据集,方法,趋势,问题,挑战和任务,这些数据集,趋势,问题,挑战和任务是无法检测到的。我们的研究提供了讽刺数据集,讽刺特征及其提取方法以及各种方法的性能分析,这些表可以帮助相关领域的研究人员了解当前的讽刺检测中最新实践。
translated by 谷歌翻译
In this paper, we present a study of regret and its expression on social media platforms. Specifically, we present a novel dataset of Reddit texts that have been classified into three classes: Regret by Action, Regret by Inaction, and No Regret. We then use this dataset to investigate the language used to express regret on Reddit and to identify the domains of text that are most commonly associated with regret. Our findings show that Reddit users are most likely to express regret for past actions, particularly in the domain of relationships. We also found that deep learning models using GloVe embedding outperformed other models in all experiments, indicating the effectiveness of GloVe for representing the meaning and context of words in the domain of regret. Overall, our study provides valuable insights into the nature and prevalence of regret on social media, as well as the potential of deep learning and word embeddings for analyzing and understanding emotional language in online text. These findings have implications for the development of natural language processing algorithms and the design of social media platforms that support emotional expression and communication.
translated by 谷歌翻译
社交媒体的自杀意图检测是一种不断发展的研究,挑战了巨大的挑战。许多有自杀倾向的人通过社交媒体平台分享他们的思想和意见。作为许多研究的一部分,观察到社交媒体的公开职位包含有价值的标准,以有效地检测有自杀思想的个人。防止自杀的最困难的部分是检测和理解可能导致自杀的复杂风险因素和警告标志。这可以通过自动识别用户行为的突然变化来实现。自然语言处理技术可用于收集社交媒体交互的行为和文本特征,这些功能可以传递给特殊设计的框架,以检测人类交互中的异常,这是自杀意图指标。我们可以使用深度学习和/或基于机器学习的分类方法来实现快速检测自杀式思想。出于这种目的,我们可以采用LSTM和CNN模型的组合来检测来自用户的帖子的这种情绪。为了提高准确性,一些方法可以使用更多数据进行培训,使用注意模型提高现有模型等的效率。本文提出了一种LSTM-Incription-CNN组合模型,用于分析社交媒体提交,以检测任何潜在的自杀意图。在评估期间,所提出的模型的准确性为90.3%,F1分数为92.6%,其大于基线模型。
translated by 谷歌翻译
在线用户的精神障碍使用社交媒体帖子确定。该域名的主要挑战是利用在社交媒体平台上使用用户生成文本的道德许可。学术RE搜索者确定了心理健康分类的不足和未标记数据的问题。要处理此问题,我们已经研究了数据增强技术对域特定用户生成的心理健康分类文本的影响。在现有的良好建立的数据增强技术中,我们已经识别了简单的数据增强(EDA),条件BERT和后退转换(BT)作为生成额外文本以提高分类器性能的潜在技术。此外,采用了三种不同分类器随机林(RF),支持向量机(SVM)和逻辑回归(LR)来分析数据增强对两个公共可用的社交媒体数据集的影响。实验心理结果显示在增强数据上培训时对分类器性能的显着改进。
translated by 谷歌翻译
人们经常利用在线媒体(例如Facebook,reddit)作为表达心理困扰并寻求支持的平台。最先进的NLP技术表现出强大的潜力,可以自动从文本中检测到心理健康问题。研究表明,心理健康问题反映在人类选择中所表明的情绪(例如悲伤)中。因此,我们开发了一种新颖的情绪注释的心理健康语料库(Emoment),由2802个Facebook帖子(14845个句子)组成,该帖子从两个南亚国家(斯里兰卡和印度)提取。三名临床心理学研究生参与了将这些职位注释分为八​​类,包括“精神疾病”(例如抑郁症)和情绪(例如,“悲伤”,“愤怒”)。 Emoment语料库达到了98.3%的“非常好”的跨通道协议(即有两个或更多协议),而Fleiss的Kappa为0.82。我们基于罗伯塔的模型的F1得分为0.76,第一个任务的宏观平均F1得分为0.77(即,从职位预测心理健康状况)和第二任务(即相关帖子与定义的类别的关联程度在我们的分类法中)。
translated by 谷歌翻译
研究界在发现心理健康问题及其与社交媒体分析的相关原因方面见证了大幅增长。我们介绍了一个新的数据集,用于在社交媒体帖子(CAM)中对心理健康问题的因果分析。我们对因果分析的贡献是两方面:因果解释和因果分类。我们为这项因果分析任务引入了注释模式。我们证明了模式在两个不同数据集上的功效:(i)爬行和注释3155个Reddit帖子和(ii)重新通知了1896年实例的公开可用的SDCNL数据集,以进行可解释的因果分析。我们进一步将它们组合到CAMS数据集中,并将此资源与关联的源代码公开可用:https://github.com/drmuskangarg/cams。我们提出了从CAMS数据集中学到的模型的实验结果,并证明了经典的逻辑回归模型以4.9 \%的精度优于下一个最佳(CNN-LSTM)模型。
translated by 谷歌翻译
在网络和社交媒体上生成的大量数据增加了检测在线仇恨言论的需求。检测仇恨言论将减少它们对他人的负面影响和影响。在自然语言处理(NLP)域中的许多努力旨在宣传仇恨言论或检测特定的仇恨言论,如宗教,种族,性别或性取向。讨厌的社区倾向于使用缩写,故意拼写错误和他们的沟通中的编码词来逃避检测,增加了讨厌语音检测任务的更多挑战。因此,词表示将在检测仇恨言论中发挥越来越关的作用。本文研究了利用基于双向LSTM的深度模型中嵌入的域特定词语的可行性,以自动检测/分类仇恨语音。此外,我们调查转移学习语言模型(BERT)对仇恨语音问题作为二进制分类任务。实验表明,与双向LSTM基于LSTM的深层模型嵌入的域特异性词嵌入了93%的F1分数,而BERT在可用仇恨语音数据集中的组合平衡数据集上达到了高达96%的F1分数。
translated by 谷歌翻译
随着社交媒体平台影响的增长,滥用的影响变得越来越有影响力。自动检测威胁和滥用语言的重要性不能高估。但是,大多数现有的研究和最先进的方法都以英语为目标语言,对低资产品语言的工作有限。在本文中,我们介绍了乌尔都语的两项滥用和威胁性语言检测的任务,该任务在全球范围内拥有超过1.7亿扬声器。两者都被视为二进制分类任务,其中需要参与系统将乌尔都语中的推文分类为两个类别,即:(i)第一个任务的滥用和不滥用,以及(ii)第二次威胁和不威胁。我们提供两个手动注释的数据集,其中包含标有(i)滥用和非虐待的推文,以及(ii)威胁和无威胁。滥用数据集在火车零件中包含2400个注释的推文,测试部分中包含1100个注释的推文。威胁数据集在火车部分中包含6000个注释的推文,测试部分中包含3950个注释的推文。我们还为这两个任务提供了逻辑回归和基于BERT的基线分类器。在这项共同的任务中,来自六个国家的21个团队注册参加了参与(印度,巴基斯坦,中国,马来西亚,阿拉伯联合酋长国和台湾),有10个团队提交了子任务A的奔跑,这是虐待语言检测,9个团队提交了他们的奔跑对于正在威胁语言检测的子任务B,七个团队提交了技术报告。最佳性能系统达到子任务A的F1得分值为0.880,子任务为0.545。对于两个子任务,基于M-Bert的变压器模型都表现出最佳性能。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
自2020年初以来,Covid-19-19造成了全球重大影响。这给社会带来了很多困惑,尤其是由于错误信息通过社交媒体传播。尽管已经有几项与在社交媒体数据中发现错误信息有关的研究,但大多数研究都集中在英语数据集上。印度尼西亚的COVID-19错误信息检测的研究仍然很少。因此,通过这项研究,我们收集和注释印尼语的数据集,并通过考虑该推文的相关性来构建用于检测COVID-19错误信息的预测模型。数据集构造是由一组注释者进行的,他们标记了推文数据的相关性和错误信息。在这项研究中,我们使用印度培训预培训的语言模型提出了两阶段分类器模型,以进行推文错误信息检测任务。我们还尝试了其他几种基线模型进行文本分类。实验结果表明,对于相关性预测,BERT序列分类器的组合和用于错误信息检测的BI-LSTM的组合优于其他机器学习模型,精度为87.02%。总体而言,BERT利用率有助于大多数预测模型的更高性能。我们发布了高质量的Covid-19错误信息推文语料库,用高通道一致性表示。
translated by 谷歌翻译
仇恨言论是一种在线骚扰的形式,涉及使用滥用语言,并且在社交媒体帖子中通常可以看到。这种骚扰主要集中在诸如宗教,性别,种族等的特定群体特征上,如今它既有社会和经济后果。文本文章中对滥用语言的自动检测一直是一项艰巨的任务,但最近它从科学界获得了很多兴趣。本文解决了在社交媒体中辨别仇恨内容的重要问题。我们在这项工作中提出的模型是基于LSTM神经网络体系结构的现有方法的扩展,我们在短文中适当地增强和微调以检测某些形式的仇恨语言,例如种族主义或性别歧视。最重要的增强是转换为由复发性神经网络(RNN)分类器组成的两阶段方案。将第一阶段的所有一Vs式分类器(OVR)分类器的输出组合在一起,并用于训练第二阶段分类器,最终决定了骚扰的类型。我们的研究包括对在16K推文的公共语料库中评估的第二阶段提出的几种替代方法的性能比较,然后对另一个数据集进行了概括研究。报道的结果表明,与当前的最新技术相比,在仇恨言论检测任务中,所提出的方案的分类质量出色。
translated by 谷歌翻译
自杀是主要的公共卫生危机。每年有超过20,000,000多次自杀企图,对自杀意图的早期发现有可能挽救数十万生命。传统的心理健康筛查方法是耗时的,昂贵的,而且弱势群体通常无法获得;使用机器学习对自杀意图的在线检测提供了可行的替代方法。在这里,我们介绍了迄今为止最大的非关键字生成的自杀语料库Robin,包括超过110万个在线论坛发布。除了其前所未有的规模外,罗宾还专门构建了各种自杀文本,例如自杀丧亲和轻率的参考文献,更好地促进了对罗宾进行培训的模型,以学习表达自杀构思的文本细微差别。实验结果通过传统方法(例如逻辑回归(F1 = 0.85))以及大规模的预训练的语言模型(例如BERT)(F1 = 0.92),实现了自杀文本分类的最新性能。 。最后,我们公开发布Robin数据集作为机器学习资源,有可能推动下一代自杀情绪研究。
translated by 谷歌翻译
社交媒体的重要性在过去几十年中增加了流畅,因为它帮助人们甚至是世界上最偏远的角落保持联系。随着技术的出现,数字媒体比以往任何时候都变得更加相关和广泛使用,并且在此之后,假冒新闻和推文的流通中有一种复兴,需要立即关注。在本文中,我们描述了一种新的假新闻检测系统,可自动识别新闻项目是“真实的”或“假”,作为我们在英语挑战中的约束Covid-19假新闻检测中的工作的延伸。我们使用了一个由预先训练的模型组成的集合模型,然后是统计特征融合网络,以及通过在新闻项目或推文中的各种属性,如源,用户名处理,URL域和作者中的各种属性结合到统计特征中的各种属性。我们所提出的框架还规定了可靠的预测性不确定性以及分类任务的适当类别输出置信水平。我们在Covid-19假新闻数据集和Fakenewsnet数据集上评估了我们的结果,以显示所提出的算法在短期内容中检测假新闻以及新闻文章中的算法。我们在Covid-19数据集中获得了0.9892的最佳F1分,以及Fakenewsnet数据集的F1分数为0.9073。
translated by 谷歌翻译
常规的识别抑郁症的方法无法扩展,公众对心理健康的认识有限,尤其是在发展中国家。从最近的研究中可以明显看出,社交媒体有可能更涉及心理健康筛查。按时间顺序排列的大量第一人称叙事帖子可以在一段时间内为人们的思想,感觉,行为或情绪提供见解,从而更好地理解在线空间中反映的抑郁症状。在本文中,我们提出了SERCNN,该文章通过(1)从不同域中堆叠两个预处理的嵌入方式以及(2)将嵌入环境重新引入MLP分类器来改善用户表示。我们的Sercnn在最先进的基线和其他基线方面表现出色,在5倍的交叉验证设置中达到93.7%的精度。由于并非所有用户都共享相同级别的在线活动,因此我们介绍了固定观察窗口的概念,该窗口量化了预定义的帖子中的观察期。 Sercnn的精度非常出色,其精度与BERT模型相当,而参数数量却少98%,Sercnn的表现出色,其精度非常出色。我们的发现为在社交媒体上检测抑郁症的方向开辟了一个有希望的方向,并较少的推断帖子,以为具有成本效益和及时干预的解决方案。我们希望我们的工作能够使该研究领域在现有临床实践中更接近现实世界的采用。
translated by 谷歌翻译
近年来,已经出现了许多巨魔帐户来操纵社交媒体的意见。对于社交网络平台而言,检测和消除巨魔是一个关键问题,因为企业,滥用者和民族国家赞助的巨魔农场使用虚假和自动化的帐户。 NLP技术用于从社交网络文本中提取数据,例如Twitter推文。在许多文本处理应用程序中,诸如BERT之类的单词嵌入表示方法的执行效果要好于先前的NLP技术,从而为各种任务提供了新颖的突破,以精确理解和分类社交网络工作信息。本文实施并比较了九个基于深度学习的巨魔推文检测体系结构,每个bert,elmo和手套词嵌入模型的三个模型。精度,召回,F1分数,AUC和分类精度用于评估每个体系结构。从实验结果中,大多数使用BERT模型的架构改进了巨魔推文检测。具有GRU分类器的基于自定义的基于ELMO的体系结构具有检测巨魔消息的最高AUC。所提出的体系结构可以由各种基于社会的系统用于未来检测巨魔消息。
translated by 谷歌翻译
Hope is characterized as openness of spirit toward the future, a desire, expectation, and wish for something to happen or to be true that remarkably affects human's state of mind, emotions, behaviors, and decisions. Hope is usually associated with concepts of desired expectations and possibility/probability concerning the future. Despite its importance, hope has rarely been studied as a social media analysis task. This paper presents a hope speech dataset that classifies each tweet first into "Hope" and "Not Hope", then into three fine-grained hope categories: "Generalized Hope", "Realistic Hope", and "Unrealistic Hope" (along with "Not Hope"). English tweets in the first half of 2022 were collected to build this dataset. Furthermore, we describe our annotation process and guidelines in detail and discuss the challenges of classifying hope and the limitations of the existing hope speech detection corpora. In addition, we reported several baselines based on different learning approaches, such as traditional machine learning, deep learning, and transformers, to benchmark our dataset. We evaluated our baselines using weighted-averaged and macro-averaged F1-scores. Observations show that a strict process for annotator selection and detailed annotation guidelines enhanced the dataset's quality. This strict annotation process resulted in promising performance for simple machine learning classifiers with only bi-grams; however, binary and multiclass hope speech detection results reveal that contextual embedding models have higher performance in this dataset.
translated by 谷歌翻译
全球世界正在穿越大流行形势,这是一个灾难性的呼吸综合征爆发被认为是Covid-19。这是212个国家的全球威胁,即人们每天都会遇到强大的情况。相反,成千上万的受感染的人居住丰富的山脉。心理健康也受到全球冠状病毒情况的影响。由于这种情况,在线消息来源使普通人在任何议程中分享他们的意见。如受影响的新闻相关的积极和消极,财务问题,国家和家庭危机,缺乏进出口盈利系统等。不同的情况是最近在任何地方的时尚新闻。因此,在瞬间内产生了大量的文本,在次大陆领域,与其他国家的情况相同,以及文本的人民意见和情况也是相同的,但语言是不同的。本文提出了一些具体的投入以及来自个别来源的孟加拉文本评论,可以确保插图的目标,即机器学习结果能够建立辅助系统。意见挖掘辅助系统可能以可能的所有语言偏好有影响。据我们所知,文章预测了Covid-19问题上的Bangla输入文本,提出了ML算法和深度学习模型分析还通过比较分析检查未来可达性。比较分析规定了关于文本预测精度的报告与ML算法和79%以及深度学习模型以及79%的报告。
translated by 谷歌翻译