In this paper, we present a study of regret and its expression on social media platforms. Specifically, we present a novel dataset of Reddit texts that have been classified into three classes: Regret by Action, Regret by Inaction, and No Regret. We then use this dataset to investigate the language used to express regret on Reddit and to identify the domains of text that are most commonly associated with regret. Our findings show that Reddit users are most likely to express regret for past actions, particularly in the domain of relationships. We also found that deep learning models using GloVe embedding outperformed other models in all experiments, indicating the effectiveness of GloVe for representing the meaning and context of words in the domain of regret. Overall, our study provides valuable insights into the nature and prevalence of regret on social media, as well as the potential of deep learning and word embeddings for analyzing and understanding emotional language in online text. These findings have implications for the development of natural language processing algorithms and the design of social media platforms that support emotional expression and communication.
translated by 谷歌翻译
Hope is characterized as openness of spirit toward the future, a desire, expectation, and wish for something to happen or to be true that remarkably affects human's state of mind, emotions, behaviors, and decisions. Hope is usually associated with concepts of desired expectations and possibility/probability concerning the future. Despite its importance, hope has rarely been studied as a social media analysis task. This paper presents a hope speech dataset that classifies each tweet first into "Hope" and "Not Hope", then into three fine-grained hope categories: "Generalized Hope", "Realistic Hope", and "Unrealistic Hope" (along with "Not Hope"). English tweets in the first half of 2022 were collected to build this dataset. Furthermore, we describe our annotation process and guidelines in detail and discuss the challenges of classifying hope and the limitations of the existing hope speech detection corpora. In addition, we reported several baselines based on different learning approaches, such as traditional machine learning, deep learning, and transformers, to benchmark our dataset. We evaluated our baselines using weighted-averaged and macro-averaged F1-scores. Observations show that a strict process for annotator selection and detailed annotation guidelines enhanced the dataset's quality. This strict annotation process resulted in promising performance for simple machine learning classifiers with only bi-grams; however, binary and multiclass hope speech detection results reveal that contextual embedding models have higher performance in this dataset.
translated by 谷歌翻译
讽刺可以被定义为说或写讽刺与一个人真正想表达的相反,通常是为了侮辱,刺激或娱乐某人。由于文本数据中讽刺性的性质晦涩难懂,因此检测到情感分析研究社区的困难和非常感兴趣。尽管讽刺检测的研究跨越了十多年,但最近已经取得了一些重大进步,包括在多模式环境中采用了无监督的预训练的预训练的变压器,并整合了环境以识别讽刺。在这项研究中,我们旨在简要概述英语计算讽刺研究的最新进步和趋势。我们描述了与讽刺有关的相关数据集,方法,趋势,问题,挑战和任务,这些数据集,趋势,问题,挑战和任务是无法检测到的。我们的研究提供了讽刺数据集,讽刺特征及其提取方法以及各种方法的性能分析,这些表可以帮助相关领域的研究人员了解当前的讽刺检测中最新实践。
translated by 谷歌翻译
社交媒体的自杀意图检测是一种不断发展的研究,挑战了巨大的挑战。许多有自杀倾向的人通过社交媒体平台分享他们的思想和意见。作为许多研究的一部分,观察到社交媒体的公开职位包含有价值的标准,以有效地检测有自杀思想的个人。防止自杀的最困难的部分是检测和理解可能导致自杀的复杂风险因素和警告标志。这可以通过自动识别用户行为的突然变化来实现。自然语言处理技术可用于收集社交媒体交互的行为和文本特征,这些功能可以传递给特殊设计的框架,以检测人类交互中的异常,这是自杀意图指标。我们可以使用深度学习和/或基于机器学习的分类方法来实现快速检测自杀式思想。出于这种目的,我们可以采用LSTM和CNN模型的组合来检测来自用户的帖子的这种情绪。为了提高准确性,一些方法可以使用更多数据进行培训,使用注意模型提高现有模型等的效率。本文提出了一种LSTM-Incription-CNN组合模型,用于分析社交媒体提交,以检测任何潜在的自杀意图。在评估期间,所提出的模型的准确性为90.3%,F1分数为92.6%,其大于基线模型。
translated by 谷歌翻译
鉴于当前全球的社交距离限制,大多数人现在使用社交媒体作为其主要交流媒介。因此,数百万患有精神疾病的人被孤立了,他们无法亲自获得帮助。他们越来越依赖在线场地,以表达自己并寻求有关处理精神障碍的建议。根据世界卫生组织(WHO)的说法,大约有4.5亿人受到影响。精神疾病(例如抑郁,焦虑等)非常普遍,并影响了个体的身体健康。最近提出了人工智能(AI)方法,以帮助基于患者的真实信息(例如,医疗记录,行为数据,社交媒体利用等),包括精神病医生和心理学家在内的心理健康提供者。 AI创新表明,在从计算机视觉到医疗保健的众多现实应用应用程序中,主要执行。这项研究分析了REDDIT平台上的非结构化用户数据,并分类了五种常见的精神疾病:抑郁,焦虑,双相情感障碍,ADHD和PTSD。我们培训了传统的机器学习,深度学习和转移学习多级模型,以检测个人的精神障碍。这项工作将通过自动化检测过程并告知适当当局需要紧急援助的人来使公共卫生系统受益。
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
研究表明,与自杀相关的新闻媒体内容的暴露与自杀率相关,具有一些内容特征可能具有有害和其他可能的保护作用。虽然有一些选定的特征存在良好的证据,但是一般缺少系统的大规模调查,特别是社交媒体数据。我们应用机器学习方法以自动标记大量的Twitter数据。我们开发了一种新的注释计划,将与自杀相关的推文分类为不同的消息类型和问题,以解决方案为中心的视角。然后,我们培训了包括多数分类器的机器学习模型的基准,这是一种基于词频率的方法(具有线性SVM的TF-IDF)和两个最先进的深层学习模型(BERT,XLNET)。这两个深入学习模型在两个分类任务中实现了最佳性能:首先,我们分类了六个主要内容类别,包括个人故事,包括自杀意图和尝试或应对,呼吁采取措施传播问题意识或预防相关信息,自杀病例的报告以及其他与自杀相关和偏离主题推文的报告。深度学习模型平均达到73%以上的准确度,遍布六个类别,F1分数为69%和85%,除了自杀意念和尝试类别(55%)。其次,在分离帖子中,在偏离主题推文中指的是实际自杀题,他们正确标记了大约88%的推文,双方达到了F1分数为93%和74%。这些分类性能与类似任务的最先进的性能相当。通过使数据标签更有效,这项工作能够对各种社交媒体内容的有害和保护作用进行自杀率和寻求帮助行为的有害和保护作用。
translated by 谷歌翻译
社交媒体平台上的滥用内容的增长增加对在线用户的负面影响。对女同性恋,同性恋者,跨性别或双性恋者的恐惧,不喜欢,不适或不疑虑被定义为同性恋/转铁症。同性恋/翻译语音是一种令人反感的语言,可以总结为针对LGBT +人的仇恨语音,近年来越来越受到兴趣。在线同性恋恐惧症/ Transphobobia是一个严重的社会问题,可以使网上平台与LGBT +人有毒和不受欢迎,同时还试图消除平等,多样性和包容性。我们为在线同性恋和转鸟以及专家标记的数据集提供了新的分类分类,这将允许自动识别出具有同种异体/传递内容的数据集。我们受过教育的注释器并以综合的注释规则向他们提供,因为这是一个敏感的问题,我们以前发现未受训练的众包注释者因文化和其他偏见而诊断倡导性的群体。数据集包含15,141个注释的多语言评论。本文介绍了构建数据集,数据的定性分析和注册间协议的过程。此外,我们为数据集创建基线模型。据我们所知,我们的数据集是第一个已创建的数据集。警告:本文含有明确的同性恋,转基因症,刻板印象的明确陈述,这可能对某些读者令人痛苦。
translated by 谷歌翻译
自2020年初以来,Covid-19-19造成了全球重大影响。这给社会带来了很多困惑,尤其是由于错误信息通过社交媒体传播。尽管已经有几项与在社交媒体数据中发现错误信息有关的研究,但大多数研究都集中在英语数据集上。印度尼西亚的COVID-19错误信息检测的研究仍然很少。因此,通过这项研究,我们收集和注释印尼语的数据集,并通过考虑该推文的相关性来构建用于检测COVID-19错误信息的预测模型。数据集构造是由一组注释者进行的,他们标记了推文数据的相关性和错误信息。在这项研究中,我们使用印度培训预培训的语言模型提出了两阶段分类器模型,以进行推文错误信息检测任务。我们还尝试了其他几种基线模型进行文本分类。实验结果表明,对于相关性预测,BERT序列分类器的组合和用于错误信息检测的BI-LSTM的组合优于其他机器学习模型,精度为87.02%。总体而言,BERT利用率有助于大多数预测模型的更高性能。我们发布了高质量的Covid-19错误信息推文语料库,用高通道一致性表示。
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
研究界在发现心理健康问题及其与社交媒体分析的相关原因方面见证了大幅增长。我们介绍了一个新的数据集,用于在社交媒体帖子(CAM)中对心理健康问题的因果分析。我们对因果分析的贡献是两方面:因果解释和因果分类。我们为这项因果分析任务引入了注释模式。我们证明了模式在两个不同数据集上的功效:(i)爬行和注释3155个Reddit帖子和(ii)重新通知了1896年实例的公开可用的SDCNL数据集,以进行可解释的因果分析。我们进一步将它们组合到CAMS数据集中,并将此资源与关联的源代码公开可用:https://github.com/drmuskangarg/cams。我们提出了从CAMS数据集中学到的模型的实验结果,并证明了经典的逻辑回归模型以4.9 \%的精度优于下一个最佳(CNN-LSTM)模型。
translated by 谷歌翻译
为了防止青年自杀,社交媒体平台受到了研究人员的广泛关注。一些研究应用机器学习或基于深度学习的文本分类方法来对包含自杀风险的社交媒体帖子进行分类。本文复制了基于社交媒体的自杀性检测/预测模型。我们评估了使用多个数据集和不同最先进的深度学习模型(RNN-,CNN-和基于注意力的模型)检测自杀构想的可行性。使用两个自杀性评估数据集,我们通过定量和定性方式评估了28种输入嵌入的组合和4种常用的深度学习模型和5种预处理的语言模型。我们的复制研究证实,深度学习总体上可以很好地适用于基于社交媒体的自杀性检测,但这在很大程度上取决于数据集的质量。
translated by 谷歌翻译
The sentiment analysis task has various applications in practice. In the sentiment analysis task, words and phrases that represent positive and negative emotions are important. Finding out the words that represent the emotion from the text can improve the performance of the classification models for the sentiment analysis task. In this paper, we propose a methodology that combines the emotion lexicon with the classification model to enhance the accuracy of the models. Our experimental results show that the emotion lexicon combined with the classification model improves the performance of models.
translated by 谷歌翻译
随着社交媒体平台上的开放文本数据的最新扩散,在过去几年中,文本的情感检测(ED)受到了更多关注。它有许多应用程序,特别是对于企业和在线服务提供商,情感检测技术可以通过分析客户/用户对产品和服务的感受来帮助他们做出明智的商业决策。在这项研究中,我们介绍了Armanemo,这是一个标记为七个类别的7000多个波斯句子的人类标记的情感数据集。该数据集是从不同资源中收集的,包括Twitter,Instagram和Digikala(伊朗电子商务公司)的评论。标签是基于埃克曼(Ekman)的六种基本情感(愤怒,恐惧,幸福,仇恨,悲伤,奇迹)和另一个类别(其他),以考虑Ekman模型中未包含的任何其他情绪。除数据集外,我们还提供了几种基线模型,用于情绪分类,重点是最新的基于变压器的语言模型。我们的最佳模型在我们的测试数据集中达到了75.39%的宏观平均得分。此外,我们还进行了转移学习实验,以将我们提出的数据集的概括与其他波斯情绪数据集进行比较。这些实验的结果表明,我们的数据集在现有的波斯情绪数据集中具有较高的概括性。 Armanemo可在https://github.com/arman-rayan-sharif/arman-text-emotion上公开使用。
translated by 谷歌翻译
道德框架和情感会影响各种在线和离线行为,包括捐赠,亲环境行动,政治参与,甚至参与暴力抗议活动。自然语言处理中的各种计算方法(NLP)已被用来从文本数据中检测道德情绪,但是为了在此类主观任务中取得更好的性能,需要大量的手工注销训练数据。事实证明,以前对道德情绪注释的语料库已被证明是有价值的,并且在NLP和整个社会科学中都产生了新的见解,但仅限于Twitter。为了促进我们对道德修辞的作用的理解,我们介绍了道德基础Reddit语料库,收集了16,123个reddit评论,这些评论已从12个不同的子雷迪维特策划,由至少三个训练有素的注释者手工注释,用于8种道德情绪(即护理,相称性,平等,纯洁,权威,忠诚,瘦道,隐含/明确的道德)基于更新的道德基础理论(MFT)框架。我们使用一系列方法来为这种新的语料库(例如跨域分类和知识转移)提供基线道德句子分类结果。
translated by 谷歌翻译
人们经常利用在线媒体(例如Facebook,reddit)作为表达心理困扰并寻求支持的平台。最先进的NLP技术表现出强大的潜力,可以自动从文本中检测到心理健康问题。研究表明,心理健康问题反映在人类选择中所表明的情绪(例如悲伤)中。因此,我们开发了一种新颖的情绪注释的心理健康语料库(Emoment),由2802个Facebook帖子(14845个句子)组成,该帖子从两个南亚国家(斯里兰卡和印度)提取。三名临床心理学研究生参与了将这些职位注释分为八​​类,包括“精神疾病”(例如抑郁症)和情绪(例如,“悲伤”,“愤怒”)。 Emoment语料库达到了98.3%的“非常好”的跨通道协议(即有两个或更多协议),而Fleiss的Kappa为0.82。我们基于罗伯塔的模型的F1得分为0.76,第一个任务的宏观平均F1得分为0.77(即,从职位预测心理健康状况)和第二任务(即相关帖子与定义的类别的关联程度在我们的分类法中)。
translated by 谷歌翻译
The health mention classification (HMC) task is the process of identifying and classifying mentions of health-related concepts in text. This can be useful for identifying and tracking the spread of diseases through social media posts. However, this is a non-trivial task. Here we build on recent studies suggesting that using emotional information may improve upon this task. Our study results in a framework for health mention classification that incorporates affective features. We present two methods, an intermediate task fine-tuning approach (implicit) and a multi-feature fusion approach (explicit) to incorporate emotions into our target task of HMC. We evaluated our approach on 5 HMC-related datasets from different social media platforms including three from Twitter, one from Reddit and another from a combination of social media sources. Extensive experiments demonstrate that our approach results in statistically significant performance gains on HMC tasks. By using the multi-feature fusion approach, we achieve at least a 3% improvement in F1 score over BERT baselines across all datasets. We also show that considering only negative emotions does not significantly affect performance on the HMC task. Additionally, our results indicate that HMC models infused with emotional knowledge are an effective alternative, especially when other HMC datasets are unavailable for domain-specific fine-tuning. The source code for our models is freely available at https://github.com/tahirlanre/Emotion_PHM.
translated by 谷歌翻译
信息通过社交媒体平台的传播可以创造可能对弱势社区的环境和社会中某些群体的沉默。为了减轻此类情况,已经开发了几种模型来检测仇恨和冒犯性言论。由于在社交媒体平台中检测仇恨和冒犯性演讲可能会错误地将个人排除在社交媒体平台之外,从而减少信任,因此有必要创建可解释和可解释的模型。因此,我们基于在Twitter数据上培训的XGBOOST算法建立了一个可解释且可解释的高性能模型。对于不平衡的Twitter数据,XGBoost在仇恨言语检测上的表现优于LSTM,Autogluon和ULMFIT模型,F1得分为0.75,而0.38和0.37分别为0.37和0.38。当我们将数据放到三个单独的类别的大约5000个推文中时,XGBoost的性能优于LSTM,Autogluon和Ulmfit;仇恨言语检测的F1分别为0.79和0.69、0.77和0.66。 XGBOOST在下采样版本中的进攻性语音检测中的F1得分分别为0.83和0.88、0.82和0.79,XGBOOST的表现也比LSTM,Autogluon和Ulmfit更好。我们在XGBoost模型的输出上使用Shapley添加说明(SHAP),以使其与Black-Box模型相比,与LSTM,Autogluon和Ulmfit相比,它可以解释和解释。
translated by 谷歌翻译
近年来,我们看到了处理敏感个人信息的应用程序(包括对话系统)的指数增长。这已经揭示了在虚拟环境中有关个人数据保护的极为重要的问题。首先,性能模型应该能够区分敏感内容与中性句子的句子。其次,它应该能够识别其中包含的个人数据类别的类型。这样,可以考虑每个类别的不同隐私处理。在文献中,如果有关于自动敏感数据识别的作品,则通常在没有共同基准的不同域或语言上进行。为了填补这一空白,在这项工作中,我们介绍了SPEDAC,这是一个新的注释基准,用于识别敏感的个人数据类别。此外,我们提供了对数据集的广泛评估,该数据集使用不同的基准和基于Roberta的分类器进行的,这是一种神经体系结构,在检测敏感句子和个人数据类别的分类方面实现了强大的性能。
translated by 谷歌翻译
社交媒体网络已成为人们生活的重要方面,它是其思想,观点和情感的平台。因此,自动化情绪分析(SA)对于以其他信息来源无法识别人们的感受至关重要。对这些感觉的分析揭示了各种应用,包括品牌评估,YouTube电影评论和医疗保健应用。随着社交媒体的不断发展,人们以不同形式发布大量信息,包括文本,照片,音频和视频。因此,传统的SA算法已变得有限,因为它们不考虑其他方式的表现力。通过包括来自各种物质来源的此类特征,这些多模式数据流提供了新的机会,以优化基于文本的SA之外的预期结果。我们的研究重点是多模式SA的最前沿领域,该领域研究了社交媒体网络上发布的视觉和文本数据。许多人更有可能利用这些信息在这些平台上表达自己。为了作为这个快速增长的领域的学者资源,我们介绍了文本和视觉SA的全面概述,包括数据预处理,功能提取技术,情感基准数据集以及适合每个字段的多重分类方法的疗效。我们还简要介绍了最常用的数据融合策略,并提供了有关Visual Textual SA的现有研究的摘要。最后,我们重点介绍了最重大的挑战,并调查了一些重要的情感应用程序。
translated by 谷歌翻译