Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
问题回答(QA)对知识库(KBS)的挑战是充满挑战的,因为所需的推理模式多样化,本质上是无限的,类型的推理模式。但是,我们假设以大型KB为基础,以回答各自子图中各个实体的查询类型所需的推理模式。利用不同子图的本地社区之间的这种结构相似性,我们引入了一个半参数模型(cbr-subg),(i)一个非参数组件,每个查询,每个查询,都会动态检索其他类似的$ k $ - $ - $ - $ - near-neart-tebrienk(KNN)培训查询以及查询特定的子图和(ii)训练的参数组件,该参数分量可以从KNN查询的子图中识别(潜在的)推理模式,然后将其应用于目标查询的子图。我们还提出了一种自适应子图收集策略,以选择特定于查询的compact子图,从而使我们可以扩展到包含数十亿个事实的完整freebase kb。我们表明,CBR-SUBG可以回答需要子图推理模式的查询,并在几个KBQA基准上的最佳模型竞争性能。我们的子图收集策略还会产生更多紧凑的子图(例如,webQSP的尺寸减小55 \%,而将答案召回的召回率增加4.85 \%)\ footNote {代码,模型和子码头可在\ url {https://github.com上获得。 /rajarshd/cbr-subg}}。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
使用从预先接受训练的语言模型(LMS)和知识图表(LMS)和知识图表(kgs)回答问题的问题提出了两个挑战:给定QA上下文(问答选择),方法需要(i)从大型千克识别相关知识,(ii)对QA上下文和kg进行联合推理。在这项工作中,我们提出了一种新的模型,QA-GNN,它通过两个关键创新解决了上述挑战:(i)相关评分,我们使用LMS来估计KG节点相对于给定的QA上下文的重要性,以及(ii)联合推理,我们将QA上下文和kg连接到联合图,并通过图形神经网络相互更新它们的表示。我们评估了QA基准的模型(CommanSeaseQA,OpenBookQA)和生物医学(MedQa-USMLE)域名。QA-GNN优于现有的LM和LM + kg模型,并表现出可解释和结构化推理的能力,例如,正确处理问题的否定。
translated by 谷歌翻译
Question Answering (QA) is a task that entails reasoning over natural language contexts, and many relevant works augment language models (LMs) with graph neural networks (GNNs) to encode the Knowledge Graph (KG) information. However, most existing GNN-based modules for QA do not take advantage of rich relational information of KGs and depend on limited information interaction between the LM and the KG. To address these issues, we propose Question Answering Transformer (QAT), which is designed to jointly reason over language and graphs with respect to entity relations in a unified manner. Specifically, QAT constructs Meta-Path tokens, which learn relation-centric embeddings based on diverse structural and semantic relations. Then, our Relation-Aware Self-Attention module comprehensively integrates different modalities via the Cross-Modal Relative Position Bias, which guides information exchange between relevant entities of different modalities. We validate the effectiveness of QAT on commonsense question answering datasets like CommonsenseQA and OpenBookQA, and on a medical question answering dataset, MedQA-USMLE. On all the datasets, our method achieves state-of-the-art performance. Our code is available at http://github.com/mlvlab/QAT.
translated by 谷歌翻译
这项工作调查了以知识图(kg)形式的外部知识来源的理解问题的学习和推理的挑战。我们提出了一种新型的图形神经网络体系结构,称为动态相关图形网络(DRGN)。 DRGN根据问题和答案实体在给定的KG子图上运行,并使用节点之间的相关得分来动态建立新的边缘,以在图形网络中学习节点表示。相关性的这种显式用法作为图表具有以下优点,a)模型可以利用现有关系,重新缩放节点权重,并影响邻里节点的表示方式在kg子图中汇总的方式,b)恢复推理所需的千克中缺失的边缘。此外,作为副产品,由于考虑了问题节点与图形实体之间的相关性,我们的模型改善了处理负面问题。与最新发布的结果相比,我们提出的方法在两个质量检查基准CommonSenseQA和OpenBookQA上显示了竞争性能。
translated by 谷歌翻译
链接预测是图形上非常基本的任务。在本文中受到传统路径的方法的启发,我们提出了一种基于链路预测路径的一般和灵活的表示学习框架。具体地,我们将一对节点的表示定义为所有路径表示的广义和,每个路径表示为路径中的边缘表示的广义乘积。通过贝尔曼-Ford算法来解决最短路径问题,我们表明,所提出的路径配方可以通过广义的Bellman-Ford算法有效地解决。为了进一步提高路径制构的能力,我们提出了神经贝尔曼 - 福特网络(NBFNET),这是一种全图神经网络框架,其解决了通过广义Bellman-Ford算法中的学习运算符的路径制定。 NBFNET使用3个神经元件,即指示器,消息和聚合函数参数,即分别对应于边界条件,乘法运算符和求和运算符。 NBFNET非常一般,涵盖许多传统的基于路径的方法,并且可以应用于转导和归纳设置的同质图和多关系图(例如,知识图表)。两个均匀图表和知识图表的实验表明,所提出的NBFNET在转换和归纳设置中的大幅度优于现有方法,实现了新的最先进的结果。
translated by 谷歌翻译
归纳链路预测(ILP)是考虑到新兴知识图(kgs)中未见实体的联系,考虑到KGS的发展性质。一个更具挑战性的场景是,新兴的kg仅由看不见的实体组成,被称为已断开新兴kgs(DEKGS)。 DEKGS的现有研究仅专注于预测封闭链接,即预测新兴KG内部的联系。到目前为止,先前的工作尚未对将进化信息从原始KG到DEKG进行进化信息。为了填补空白,我们提出了一个名为DEKG-ILP的新型模型(由以下两个组成部分组成的dekg-ilp(断开新兴知识图形的归纳链路预测)。 (1)模块CLRM(基于对比的关系特定特征特征建模)是为了提取基于全球关系的语义特征而开发的,它们在原始KGS和DEKGS之间以新颖的采样策略共享。 (2)提出了模块GSM(基于GNN的子图建模),以提取围绕KGS中每个链接的局部子图拓扑信息。在几个基准数据集上进行的广泛实验表明,与最新方法相比,DEKG-ILP具有明显的性能改进,用于封闭和桥接链路预测。源代码可在线获得。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
最近,链接预测问题,也称为知识图完成,已经吸引了大量的研究。即使最近的型号很少试图通过在低维度中嵌入知识图表来实现相对良好的性能,即目前最先进的模型的最佳结果是以大大提高嵌入的维度的成本赚取的。然而,这导致在巨大知识库的情况下导致过度舒服和更重要的可扩展性问题。灵感灵感来自变压器模型的变体提供的深度学习的进步,因为它的自我关注机制,在本文中,我们提出了一种基于IT的模型来解决上述限制。在我们的模型中,自我关注是将查询依赖预测应用于实体和关系的关键,并捕获它们之间的相互信息,以获得来自低维嵌入的高度富有表现力的表现。两种标准链路预测数据集,FB15K-237和WN18RR的经验结果表明,我们的模型比我们三个最近最近期的最新竞争对手实现了相当的性能或更好的性能,其维度的重大减少了76.3%平均嵌入。
translated by 谷歌翻译
知识图表问题基于信息检索旨在通过从大型知识图表中检索答案来回答问题来回答(即,kgqa)。大多数现有方法首先粗略地检索可能包含候选答案的知识子图(KSG),然后搜索子图中的确切答案。然而,粗略检索的KSG可以包含数千个候选节点,因为查询中涉及的知识图通常是大规模的。为了解决这个问题,我们首先建议通过新的子图分区算法将检索到的ksg分区为几个较小的子ksgs,然后呈现一个图形增强学习,以便测量模型以从中选择排名的子ksgs。我们所提出的模型结合了新的子图匹配网络,以捕获问题和子图中的全局交互以及增强的双边多视角匹配模型,以捕获局部交互。最后,我们分别在全KSG和排名级分ksg上应用答案选择模型,以验证我们提出的图形增强学习的效果。多个基准数据集的实验结果表明了我们方法的有效性。
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
知识图嵌入(KGE)旨在将实体和关系映射到低维空间,并成为知识图完成的\ textit {de-facto}标准。大多数现有的KGE方法都受到稀疏挑战的困扰,在这种挑战中,很难预测在知识图中频繁的实体。在这项工作中,我们提出了一个新颖的框架KRACL,以减轻具有图表和对比度学习的KG中广泛的稀疏性。首先,我们建议知识关系网络(KRAT)通过同时将相邻的三元组投射到不同的潜在空间,并通过注意机制共同汇总信息来利用图形上下文。 KRAT能够捕获不同上下文三联的微妙的语义信息和重要性,并利用知识图中的多跳信息。其次,我们通过将对比度损失与跨熵损失相结合,提出知识对比损失,这引入了更多的负样本,从而丰富了对稀疏实体的反馈。我们的实验表明,KRACL在各种标准知识基准中取得了卓越的结果,尤其是在WN18RR和NELL-995上,具有大量低级内实体。广泛的实验还具有KRACL在处理稀疏知识图和鲁棒性三元组的鲁棒性方面的有效性。
translated by 谷歌翻译
在知识图上回答自然语言问题(KGQA)仍然是通过多跳推理理解复杂问题的巨大挑战。以前的努力通常利用与实体相关的文本语料库或知识图(kg)嵌入作为辅助信息来促进答案选择。但是,实体之间隐含的富裕语义远未得到很好的探索。本文提议通过利用关系路径的混合语义来改善多跳kgqa。具体而言,我们基于新颖的旋转和规模的实体链接链接预测框架,集成了关系路径的明确文本信息和隐式kg结构特征。在三个KGQA数据集上进行的广泛实验证明了我们方法的优势,尤其是在多跳场景中。进一步的调查证实了我们方法在问题和关系路径之间的系统协调,以识别答案实体。
translated by 谷歌翻译
由于知识图(kgs)的不完整,旨在预测kgs中未观察到的关系的零照片链接预测(ZSLP)引起了研究人员的最新兴趣。一个常见的解决方案是将关系的文本特征(例如表面名称或文本描述)用作辅助信息,以弥合所见关系和看不见的关系之间的差距。当前方法学习文本中每个单词令牌的嵌入。这些方法缺乏稳健性,因为它们遭受了量不足(OOV)的问题。同时,建立在字符n-grams上的模型具有为OOV单词生成表达式表示的能力。因此,在本文中,我们提出了一个为零链接预测(HNZSLP)的层次N-gram框架,该框架考虑了ZSLP的关系n-gram之间的依赖项。我们的方法通过首先在表面名称上构造层次n-gram图来进行起作用,以模拟导致表面名称的N-gram的组织结构。然后,将基于变压器的革兰amtransformer呈现,以建模层次n-gram图,以构建ZSLP的关系嵌入。实验结果表明,提出的HNZSLP在两个ZSLP数据集上实现了最先进的性能。
translated by 谷歌翻译
图表可以表示实体之间的关系信息,图形结构广泛用于许多智能任务,例如搜索,推荐和问题应答。然而,实际上大多数图形结构数据都遭受了不完整性,因此链路预测成为一个重要的研究问题。虽然提出了许多模型来用于链路预测,但以下两个问题仍然仍然较少:(1)大多数方法在不利用相关链路中使用丰富的信息,大多数方法都独立模型,并且(2)现有型号主要基于关联设计学习并没有考虑推理。通过这些问题,在本文中,我们提出了图表协作推理(GCR),它可以使用邻居与逻辑推理视角的关系中的关系推理。我们提供了一种简单的方法来将图形结构转换为逻辑表达式,以便链路预测任务可以转换为神经逻辑推理问题。我们应用逻辑受限的神经模块根据逻辑表达式构建网络架构,并使用反向传播以有效地学习模型参数,这在统一架构中桥接可分辨率的学习和象征性推理。为了展示我们工作的有效性,我们对图形相关任务进行实验,例如基于常用的基准数据集的链路预测和推荐,我们的图表合作推理方法实现了最先进的性能。
translated by 谷歌翻译
从自然语言问题中构建查询图是在知识图上回答复杂问题(复杂KGQA)的重要一步。通常,如果正确构建其查询图,可以正确回答问题,然后通过针对kg发出查询图来检索正确的答案。因此,本文着重于自然语言问题的查询图生成。查询图生成的现有方法忽略了问题的语义结构,从而导致大量破坏预测准确性的嘈杂的查询图候选者。在本文中,我们从kgqa中的常见问题定义了六个语义结构,并开发了一种新颖的结构,以预测问题的语义结构。通过这样做,我们可以首先过滤嘈杂的候选查询图,然后使用基于BERT的排名模型对剩余的候选人进行排名。与最先进的艺术相比,对两个流行的基准metaqa和WebQuestionsSP(WSP)进行了广泛的实验,证明了我们方法的有效性。
translated by 谷歌翻译
知识图的归纳链路预测旨在预测未见实体之间的缺失联系,而那些未在训练阶段显示的实体。大多数以前的作品都学习实体的特定实体嵌入,这些实体无法处理看不见的实体。最近的几种方法利用封闭子图来获得归纳能力。但是,所有这些作品仅在没有完整的邻近关系的情况下考虑子图的封闭部分,这导致了忽略部分邻近关系的问题,并且很难处理稀疏的子图。为了解决这个问题,我们提出了SNRI子图邻近关系Infomax,它足够从两个方面利用完整的相邻关系:节点特征的相邻关系特征和稀疏子图的相邻关系路径。为了进一步以全球方式建模邻近关系,我们对知识图进行创新的相互信息(MI)最大化。实验表明,SNRI在归纳链路预测任务上的大幅度优于现有的最新方法,并验证以全局方式探索完整的邻近关系的有效性,以表征节点特征和在稀疏子分类上的理由。
translated by 谷歌翻译
现有的kg增强模型用于问题回答主要专注于设计精心图形神经网络(GNN)以模拟知识图(KG)。但是,它们忽略了(i)有效地融合和推理过问题上下文表示和kg表示,并且(ii)在推理期间自动从嘈杂的KG中选择相关节点。在本文中,我们提出了一种新颖的型号,其通过LMS和GNN的联合推理和动态KGS修剪机制解决了上述限制。具体而言,ConntLK通过新的密集双向注意模块在LMS和GNN之间执行联合推理,其中每个问题令牌参加KG节点,每个KG节点都会参加问题令牌,并且两个模态表示熔断和通过多次熔断和更新。步互动。然后,动态修剪模块使用通过联合推理产生的注意重量来递归修剪无关的kg节点。我们在CommanSENSEQA和OpenBookQA数据集上的结果表明,我们的模态融合和知识修剪方法可以更好地利用相关知识来推理。
translated by 谷歌翻译
基于分解的模型(FMS),例如Distmult,在知识图完成(KGC)任务中享有持久的成功,通常优于图形神经网络(GNNS)。但是,与GNN不同,FMS难以合并节点特征并概括在归纳环境中看不见的节点。我们的工作通过提出重构GNN来弥合FMS和GNN之间的差距。这种新的体系结构借鉴了两种建模范式,以前在很大程度上被认为是不结合的。具体地说,使用消息通讯的形式主义,我们通过将梯度下降程序重新定义为消息传播操作来展示如何将FMS施加为GNN,这构成了我们重构GNN的基础。在众多成熟的KGC基准测试中,我们的重构GNN可以实现与FMS相当的转导性能以及最先进的归纳性能,同时使用较少的参数阶数。
translated by 谷歌翻译