归纳链路预测(ILP)是考虑到新兴知识图(kgs)中未见实体的联系,考虑到KGS的发展性质。一个更具挑战性的场景是,新兴的kg仅由看不见的实体组成,被称为已断开新兴kgs(DEKGS)。 DEKGS的现有研究仅专注于预测封闭链接,即预测新兴KG内部的联系。到目前为止,先前的工作尚未对将进化信息从原始KG到DEKG进行进化信息。为了填补空白,我们提出了一个名为DEKG-ILP的新型模型(由以下两个组成部分组成的dekg-ilp(断开新兴知识图形的归纳链路预测)。 (1)模块CLRM(基于对比的关系特定特征特征建模)是为了提取基于全球关系的语义特征而开发的,它们在原始KGS和DEKGS之间以新颖的采样策略共享。 (2)提出了模块GSM(基于GNN的子图建模),以提取围绕KGS中每个链接的局部子图拓扑信息。在几个基准数据集上进行的广泛实验表明,与最新方法相比,DEKG-ILP具有明显的性能改进,用于封闭和桥接链路预测。源代码可在线获得。
translated by 谷歌翻译
知识图的归纳链路预测旨在预测未见实体之间的缺失联系,而那些未在训练阶段显示的实体。大多数以前的作品都学习实体的特定实体嵌入,这些实体无法处理看不见的实体。最近的几种方法利用封闭子图来获得归纳能力。但是,所有这些作品仅在没有完整的邻近关系的情况下考虑子图的封闭部分,这导致了忽略部分邻近关系的问题,并且很难处理稀疏的子图。为了解决这个问题,我们提出了SNRI子图邻近关系Infomax,它足够从两个方面利用完整的相邻关系:节点特征的相邻关系特征和稀疏子图的相邻关系路径。为了进一步以全球方式建模邻近关系,我们对知识图进行创新的相互信息(MI)最大化。实验表明,SNRI在归纳链路预测任务上的大幅度优于现有的最新方法,并验证以全局方式探索完整的邻近关系的有效性,以表征节点特征和在稀疏子分类上的理由。
translated by 谷歌翻译
In knowledge graph completion (KGC), predicting triples involving emerging entities and/or relations, which are unseen when the KG embeddings are learned, has become a critical challenge. Subgraph reasoning with message passing is a promising and popular solution. Some recent methods have achieved good performance, but they (i) usually can only predict triples involving unseen entities alone, failing to address more realistic fully inductive situations with both unseen entities and unseen relations, and (ii) often conduct message passing over the entities with the relation patterns not fully utilized. In this study, we propose a new method named RMPI which uses a novel Relational Message Passing network for fully Inductive KGC. It passes messages directly between relations to make full use of the relation patterns for subgraph reasoning with new techniques on graph transformation, graph pruning, relation-aware neighborhood attention, addressing empty subgraphs, etc., and can utilize the relation semantics defined in the ontological schema of KG. Extensive evaluation on multiple benchmarks has shown the effectiveness of techniques involved in RMPI and its better performance compared with the existing methods that support fully inductive KGC. RMPI is also comparable to the state-of-the-art partially inductive KGC methods with very promising results achieved. Our codes and data are available at https://github.com/zjukg/RMPI.
translated by 谷歌翻译
多年来,旨在从已知事实中推断出新结论的知识图(KGS)的推理主要集中在静态KG上。现实生活中知识的不断增长提出了使能够扩大KGS的归纳推理能力的必要性。现有的归纳工作假设新实体都在批处理中一次出现,这过度简化了新实体不断出现的实际情况。这项研究探讨了一个更现实,更具挑战性的环境,新实体分为多批次。我们提出了一个基于步行的归纳推理模型来解决新环境。具体而言,具有自适应关系聚合的图形卷积网络旨在使用其邻近关系编码和更新实体。为了捕捉不同的邻居的重要性,我们在聚合过程中采用了一种查询反馈注意机制。此外,为了减轻新实体的稀疏链接问题,我们提出了一种链接增强策略,以将可信赖的事实添加到KGS中。我们构建了三个新数据集,用于模拟此多批次出现方案。实验结果表明,我们所提出的模型优于基于最先进的基于嵌入的,基于步行的基于步行和基于规则的模型。
translated by 谷歌翻译
图表可以表示实体之间的关系信息,图形结构广泛用于许多智能任务,例如搜索,推荐和问题应答。然而,实际上大多数图形结构数据都遭受了不完整性,因此链路预测成为一个重要的研究问题。虽然提出了许多模型来用于链路预测,但以下两个问题仍然仍然较少:(1)大多数方法在不利用相关链路中使用丰富的信息,大多数方法都独立模型,并且(2)现有型号主要基于关联设计学习并没有考虑推理。通过这些问题,在本文中,我们提出了图表协作推理(GCR),它可以使用邻居与逻辑推理视角的关系中的关系推理。我们提供了一种简单的方法来将图形结构转换为逻辑表达式,以便链路预测任务可以转换为神经逻辑推理问题。我们应用逻辑受限的神经模块根据逻辑表达式构建网络架构,并使用反向传播以有效地学习模型参数,这在统一架构中桥接可分辨率的学习和象征性推理。为了展示我们工作的有效性,我们对图形相关任务进行实验,例如基于常用的基准数据集的链路预测和推荐,我们的图表合作推理方法实现了最先进的性能。
translated by 谷歌翻译
知识图(kgs)在许多应用程序中越来越重要的基础架构,同时患有不完整问题。 KG完成任务(KGC)自动根据不完整的KG预测缺失的事实。但是,现有方法在现实情况下表现不佳。一方面,他们的性能将巨大的降解,而kg的稀疏性越来越大。另一方面,预测的推理过程是一个不可信的黑匣子。本文提出了一个稀疏kgc的新型可解释模型,将高阶推理组合到图形卷积网络中,即HOGRN。它不仅可以提高减轻信息不足问题的概括能力,而且还可以在保持模型的有效性和效率的同时提供可解释性。有两个主要组件无缝集成以进行关节优化。首先,高阶推理成分通过捕获关系之间的内源性相关性来学习高质量的关系表示。这可以反映逻辑规则,以证明更广泛的事实是合理的。其次,更新组件的实体利用无重量的图形卷积网络(GCN)有效地模拟具有可解释性的KG结构。与常规方法不同,我们在没有其他参数的情况下在关系空间中进行实体聚合和基于设计组成的注意。轻巧的设计使HOGRN更适合稀疏设置。为了进行评估,我们进行了广泛的实验 - HOGRN对几个稀疏KG的结果表现出了令人印象深刻的改善(平均为9%的MRR增益)。进一步的消融和案例研究证明了主要成分的有效性。我们的代码将在接受后发布。
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
近年来,人们对少量知识图(FKGC)的兴趣日益增加,该图表旨在推断出关于该关系的一些参考三元组,从而推断出不见了的查询三倍。现有FKGC方法的主要重点在于学习关系表示,可以反映查询和参考三元组共享的共同信息。为此,这些方法从头部和尾部实体的直接邻居中学习实体对表示,然后汇总参考实体对的表示。但是,只有从直接邻居那里学到的实体对代表可能具有较低的表现力,当参与实体稀疏直接邻居或与其他实体共享一个共同的当地社区。此外,仅仅对头部和尾部实体的语义信息进行建模不足以准确推断其关系信息,尤其是当它们具有多个关系时。为了解决这些问题,我们提出了一个特定于关系的上下文学习(RSCL)框架,该框架利用了三元组的图形上下文,以学习全球和本地关系特定的表示形式,以使其几乎没有相关关系。具体而言,我们首先提取每个三倍的图形上下文,这可以提供长期实体关系依赖性。为了编码提取的图形上下文,我们提出了一个分层注意网络,以捕获三元组的上下文信息并突出显示实体的有价值的本地邻里信息。最后,我们设计了一个混合注意聚合器,以评估全球和本地级别的查询三元组的可能性。两个公共数据集的实验结果表明,RSCL的表现优于最先进的FKGC方法。
translated by 谷歌翻译
事实证明,信息提取方法可有效从结构化或非结构化数据中提取三重。以(头部实体,关系,尾部实体)形式组织这样的三元组的组织称为知识图(kgs)。当前的大多数知识图都是不完整的。为了在下游任务中使用kgs,希望预测kgs中缺少链接。最近,通过将实体和关系嵌入到低维的矢量空间中,旨在根据先前访问的三元组来预测三元组,从而对KGS表示不同的方法。根据如何独立或依赖对三元组进行处理,我们将知识图完成的任务分为传统和图形神经网络表示学习,并更详细地讨论它们。在传统的方法中,每个三重三倍将独立处理,并在基于GNN的方法中进行处理,三倍也考虑了他们的当地社区。查看全文
translated by 谷歌翻译
Knowledge graph (KG) link prediction aims to infer new facts based on existing facts in the KG. Recent studies have shown that using the graph neighborhood of a node via graph neural networks (GNNs) provides more useful information compared to just using the query information. Conventional GNNs for KG link prediction follow the standard message-passing paradigm on the entire KG, which leads to over-smoothing of representations and also limits their scalability. On a large scale, it becomes computationally expensive to aggregate useful information from the entire KG for inference. To address the limitations of existing KG link prediction frameworks, we propose a novel retrieve-and-read framework, which first retrieves a relevant subgraph context for the query and then jointly reasons over the context and the query with a high-capacity reader. As part of our exemplar instantiation for the new framework, we propose a novel Transformer-based GNN as the reader, which incorporates graph-based attention structure and cross-attention between query and context for deep fusion. This design enables the model to focus on salient context information relevant to the query. Empirical results on two standard KG link prediction datasets demonstrate the competitive performance of the proposed method.
translated by 谷歌翻译
知识图(kg)以其大规模和知识推断能力而闻名,但也因与之相关的不完整而臭名昭著。由于关系长尾分布在公斤中的长尾分布,因此很少有人提出完成kg的完成,以减轻不完整和扩大kg的覆盖范围。它旨在对涉及新关系的三胞胎进行预测,当时仅提供少量培训三胞胎作为参考。以前的方法主要集中在设计本地邻居聚合器以学习实体级信息和/或在三胞胎级别实现顺序依赖性假设以学习元关系信息。但是,对于学习几乎没有射击关系的元表示,很大程度上忽略了宝贵的成对三重级交互和上下文级别的关系信息。在本文中,我们提出了一种分层的关系学习方法(雇用),以完成几次kg完成。通过共同捕获三个级别的关系信息(实体级别,三胞胎级别和上下文级别),雇用可以有效地学习和完善几乎没有射击关系的元表示,因此可以很好地推广到新的看不见的关系。在两个基准数据集上进行的广泛实验验证了雇用与其他最先进方法的优势。
translated by 谷歌翻译
大型知识图(KGS)提供人类知识的结构化表示。然而,由于不可能包含所有知识,KGs通常不完整。基于现有事实的推理铺平了一种发现缺失事实的方法。在本文中,我们研究了了解完成缺失事实三胞胎的知识图表的推理的学习逻辑规则问题。学习逻辑规则将具有很强的解释性的模型以及概括到类似任务的能力。我们提出了一种称为MPLR的模型,可以改进现有模型以完全使用培训数据,并且考虑多目标方案。此外,考虑到缺乏评估模型表现和开采规则的质量,我们进一步提出了两名新颖的指标来帮助解决问题。实验结果证明我们的MPLR模型在五个基准数据集中优于最先进的方法。结果还证明了指标的有效性。
translated by 谷歌翻译
链接预测是图形上非常基本的任务。在本文中受到传统路径的方法的启发,我们提出了一种基于链路预测路径的一般和灵活的表示学习框架。具体地,我们将一对节点的表示定义为所有路径表示的广义和,每个路径表示为路径中的边缘表示的广义乘积。通过贝尔曼-Ford算法来解决最短路径问题,我们表明,所提出的路径配方可以通过广义的Bellman-Ford算法有效地解决。为了进一步提高路径制构的能力,我们提出了神经贝尔曼 - 福特网络(NBFNET),这是一种全图神经网络框架,其解决了通过广义Bellman-Ford算法中的学习运算符的路径制定。 NBFNET使用3个神经元件,即指示器,消息和聚合函数参数,即分别对应于边界条件,乘法运算符和求和运算符。 NBFNET非常一般,涵盖许多传统的基于路径的方法,并且可以应用于转导和归纳设置的同质图和多关系图(例如,知识图表)。两个均匀图表和知识图表的实验表明,所提出的NBFNET在转换和归纳设置中的大幅度优于现有方法,实现了新的最先进的结果。
translated by 谷歌翻译
近年来,代数拓扑及其现代发展,即持续的同源性理论,在图形表示学习中表现出巨大的潜力。在本文中,基于代数拓扑的数学,我们提出了一种新颖的归纳关系预测解决方案,这是知识图完成的重要学习任务。为了预测两个实体之间的关系,一个人可以使用规则的存在,即一系列关系。先前的作品将规则视为路径,主要集中于搜索实体之间的路径。规则的空间很大,必须牺牲效率或准确性。在本文中,我们将规则视为循环,并表明周期的空间具有基于代数拓扑数学的数学结构。通过探索周期空间的线性结构,我们可以提高规则的搜索效率。我们建议收集跨越周期空间的循环基础。我们在收集的周期上建立了一个新颖的GNN框架,以学习周期的表示,并预测关系的存在/不存在。我们的方法在基准上实现了最先进的性能。
translated by 谷歌翻译
Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
translated by 谷歌翻译
本文介绍了$ \ mu \ text {kg} $,一个开源python库,用于在知识图上进行表示。 $ \ mu \ text {kg} $支持通过多源知识图(以及单个知识图),多个深度学习库(Pytorch和Tensorflow2),多个嵌入任务(链接预​​测,实体对准,实体键入,实体键入),支持联合表示。 ,以及多源链接预测)以及多个并行计算模式(多进程和多GPU计算)。它目前实现26个流行知识图嵌入模型,并支持16个基准数据集。 $ \ mu \ text {kg} $提供了具有不同任务的简化管道的嵌入技术的高级实现。它还带有高质量的文档,以易于使用。 $ \ mu \ text {kg} $比现有的知识图嵌入库更全面。它对于对各种嵌入模型和任务进行彻底比较和分析非常有用。我们表明,共同学习的嵌入可以极大地帮助知识驱动的下游任务,例如多跳知识图形答案。我们将与相关字段中的最新发展保持一致,并将其纳入$ \ mu \ text {kg} $中。
translated by 谷歌翻译
知识图表(KGS)是真实世界事实的结构化表示,是融合人类知识的智能数据库,可以帮助机器模仿人类问题的方法。然而,由于快速迭代的性质以及数据的不完整,KGs通常是巨大的,并且在公斤上有不可避免的事实。对于知识图链接的预测是针对基于现有的知识推理来完成缺少事实的任务。广泛研究了两个主要的研究流:一个学习可以捕获潜在模式的实体和关系的低维嵌入,以及通过采矿逻辑规则的良好解释性。不幸的是,以前的研究很少关注异质的KG。在本文中,我们提出了一种将基于嵌入的学习和逻辑规则挖掘结合的模型,以推断在KG上。具体地,我们研究了从节点程度的角度涉及各种类型的实体和关系的异构kg中的缺失链接的问题。在实验中,我们证明了我们的DegreEmbed模型优于对现实世界的数据集的国家的最先进的方法。同时,我们模型开采的规则具有高质量和可解释性。
translated by 谷歌翻译
语义关系预测旨在挖掘异质图中对象之间的隐式关系,这些关系由不同类型的对象和不同类型的链接组成。在现实世界中,新的语义关系不断出现,它们通常仅带有几个标记的数据。由于多种异构图中存在各种语义关系,因此可以从某些现有的语义关系中开采可转移的知识,以帮助预测新的语义关系,几乎没有标记的数据。这激发了一个新的问题,即跨异构图的几乎没有语义关系预测。但是,现有方法无法解决此问题,因为它们不仅需要大量的标记样本作为输入,而且还集中在具有固定异质性的单个图上。针对这个新颖而充满挑战的问题,在本文中,我们提出了一个基于元学习的图形神经网络,用于语义关系预测,名为Metags。首先,metags将对象之间的图形结构分解为多个归一化子图,然后采用两视图形神经网络来捕获这些子图的本地异质信息和全局结构信息。其次,Metags通过超出型网络汇总了这些子图的信息,该网络可以从现有的语义关系中学习并适应新的语义关系。第三,使用良好的初始化的两视图形神经网络和超出型网络,Metags可以有效地从不同的图形中学习新的语义关系,同时克服少数标记数据的限制。在三个现实世界数据集上进行的广泛实验表明,元数据的性能优于最先进的方法。
translated by 谷歌翻译
多模式知识图(MKG)不仅包括关系三重态,还包括相关的多模式辅助数据(即文本和图像),从而增强了知识的多样性。然而,自然的不完整严重阻碍了MKG的应用。为了解决该问题,现有研究采用基于嵌入的推理模型来融合多模式特征后推断缺失的知识。但是,由于以下问题,这些方法的推理性能受到限制:(1)多模式辅助特征的无效融合; (2)缺乏复杂的推理能力以及无法进行多跳的推理,该推理能够推断出更多的知识。为了克服这些问题,我们提出了一个名为MMKGR(多模式知识图推理)的新型模型。具体而言,该模型包含以下两个组件:(1)统一的栅极注意网络,旨在通过充分的注意力相互作用和降低噪声来生成有效的多模式互补特征; (2)一种补充特征感知的增强学习方法,该方法根据组件(1)中获得的特征,通过执行多跳的推理过程来预测丢失元素。实验结果表明,MMKGR在MKG推理任务中的最新方法优于最先进的方法。
translated by 谷歌翻译
虽然知识图表包含各种实体的丰富语义知识和它们之间的关系信息,但时间知识图(TKG)进一步表明实体随时间的相互作用。为了研究如何更好地模范TKG,自动时间知识图完成(TKGC)已经获得了很大的兴趣。最近的TKGC方法旨在整合先进的深度学习技术,例如注意机制和变压器,提高模型性能。然而,我们发现与采用各种复杂模块相比,更有利的是更好地利用沿时间轴的全部时间信息。在本文中,我们为TKGC提出了一个简单但强大的图形编码器Targcn。 targcn是参数效率,它广泛利用了整个时间上下文的信息。我们在三个基准数据集执行实验。与最先进的模型相比,我们的模型可以在GDELT数据集中实现42%以上的相对改善。同时,它优于ICEWS05-15数据集的最强大的基线,参数减少约为18.5%。
translated by 谷歌翻译