在本文中,我们提出了一种基于Markov转变的规模混合分布的时间序列随机模型,以检测脑电图(EEG)中的癫痫发作。在所提出的模型中,假设在高斯分布之后的每个时间点处的EEG信号是随机变量。高斯分布的协方差矩阵用潜伏的参数加权,这也是随机变量,导致协方差的随机波动。通过在该随机关系的背景下与Markov链引入潜在的状态变量,可以根据癫痫发作的状态来表示潜在比例参数分布的时间序列变化。在实验中,我们评估了使用具有从临床数据集分解的多个频带的eEgs来评估所提出的癫痫发作检测模型。结果表明,所提出的模型可以检测具有高灵敏度和优于几个基线的癫痫发作。
translated by 谷歌翻译
由于数据保护法和机构内的官方程序,在实践中很难在机构之间共享医疗数据。因此,大多数现有的算法经过相对较小的脑电图(EEG)数据集的培训,这可能会损害预测准确性。在这项工作中,我们通过将公开可用的数据集分配到代表各个机构中数据的不相交集中来共享数据时模拟了一个情况。我们建议在每个机构中培训一个(本地)检测器,并将其个人预测汇总为最终预测。比较了四个集合计划,即多数投票,平均值,加权平均值和Dawid-Skene方法。该方法仅使用EEG通道的一个子集在独立的数据集上进行了验证。当每个机构提供足够数量的数据时,合奏的精度与对所有数据进行训练的单个检测器相当。加权平均聚合方案表现出最佳性能,当局部检测器接近对所有可用数据训练的单个检测器的性能时,它只能用DAWID-SKENE方法略有优于。
translated by 谷歌翻译
While the brain connectivity network can inform the understanding and diagnosis of developmental dyslexia, its cause-effect relationships have not yet enough been examined. Employing electroencephalography signals and band-limited white noise stimulus at 4.8 Hz (prosodic-syllabic frequency), we measure the phase Granger causalities among channels to identify differences between dyslexic learners and controls, thereby proposing a method to calculate directional connectivity. As causal relationships run in both directions, we explore three scenarios, namely channels' activity as sources, as sinks, and in total. Our proposed method can be used for both classification and exploratory analysis. In all scenarios, we find confirmation of the established right-lateralized Theta sampling network anomaly, in line with the temporal sampling framework's assumption of oscillatory differences in the Theta and Gamma bands. Further, we show that this anomaly primarily occurs in the causal relationships of channels acting as sinks, where it is significantly more pronounced than when only total activity is observed. In the sink scenario, our classifier obtains 0.84 and 0.88 accuracy and 0.87 and 0.93 AUC for the Theta and Gamma bands, respectively.
translated by 谷歌翻译
目的:开发和验证一种自动化方法,用于对新生儿重症监护病房中睡眠状态波动的床旁监测。方法:基于深度学习的算法是使用30个近期新生儿的长期(a)脑电图监测的53个EEG录音设计和训练的。使用来自30个多摄影记录的外部数据集对结果进行了验证。除了训练和验证单个脑电图通道安静的睡眠探测器外,我们还构建了睡眠状态趋势(SST),这是一种可视化分类器输出的床旁准备手段。结果:训练数据中安静的睡眠检测的准确性为90%,在4电极记录中获得的所有双极派生中,精度是可比的(85-86%)。该算法很好地概括了外部数据集,尽管信号推导不同,但仍显示81%的总体精度。 SST允许对分类器输出的直观,清晰可视化。结论:可以从单个EEG通道的高保真度中检测到睡眠状态的波动,并且可以将结果可视化为床边监视器中透明和直观的趋势。意义:睡眠状态趋势(SST)可以为护理人员提供对睡眠状态波动及其周期性的实时视图。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
本文提出了一个新颖的框架,以根据权威的睡眠医学指导自动捕获人睡眠的脑电图(EEG)信号的时间频率。该框架由两个部分组成:第一部分通过将输入EEG频谱图将其划分为一系列时频贴片来提取信息特征。第二部分是由基于注意力的体系结构有效地搜索分配的时频贴片和并行睡眠阶段定义因素之间的相关性构成的。拟议的管道在Sleep Heart Health研究数据集上进行了验证,其阶段唤醒,N2和N3的新最新结果获得了相应的F1分数为0.93、0.88和0.87,仅使用EEG信号。该提出的方法还具有高评分者间可靠性为0.80 kappa。我们还可以看到睡眠分期决策与提出方法提取的特征之间的对应关系,为我们的模型提供了强大的解释性。
translated by 谷歌翻译
癫痫发作是最重要的神经障碍之一,其早期诊断将有助于临床医生为患者提供准确的治疗方法。脑电图(EEG)信号广泛用于癫痫癫痫发作检测,其提供了关于大脑功能的实质性信息的专家。本文介绍了采用模糊理论和深层学习技术的新型诊断程序。所提出的方法在Bonn大学数据集上进行了评估,具有六个分类组合以及弗赖堡数据集。可以使用可调谐Q小波变换(TQWT)来将EEG信号分解为不同的子带。在特征提取步骤中,从TQWT的不同子带计算了13个不同的模糊熵,并且计算它们的计算复杂性以帮助研究人员选择各种任务的最佳集合。在下文中,采用具有六层的AutoEncoder(AE)用于减少维数。最后,标准自适应神经模糊推理系统(ANFIS)以及其具有蚱蜢优化算法(ANFIS-GOA),粒子群优化(ANFIS-PSO)和育种群优化(ANFIS-BS)方法的变体分类。使用我们所提出的方法,ANFIS-BS方法在弗赖堡数据集上分为两类分为两类和准确度,在两类分类中获得99.46%的准确性,以及弗赖堡数据集的99.28%,达到最先进的两个人的表演。
translated by 谷歌翻译
本文提出了一种基于离散小波变换(DWT)和机器学习分类器的癫痫检测方法。这里DWT已被用于特征提取,因为它提供了更好地分解了不同频带中的信号。首先,DWT已被应用于EEG信号以提取细节和近似系数或不同的子带。在提取系数之后,主成分分析(PCA)已经应用于不同的子带,然后使用特征级融合技术来提取低维特征空间中的重要特征。三个分类器即:支持向量机(SVM)分类器,K-Cirelte-邻(KNN)分类器和NAIVE Bayes(NB)分类器已用于分类EEG信号的工作中。该方法在Bonn数据库上进行了测试,并为KNN,SVM,NB分类器提供最多100%的识别精度。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
本报告描述了一组新生儿脑电图(EEG)记录,根据背景模式中异常的严重程度分级。该数据集由来自新生儿重症监护病房记录的53个新生儿的169小时多通道脑电图组成。所有新生儿均诊断出低氧缺血性脑病(HIE),这是全年前婴儿脑损伤的最常见原因。对于每种新生儿,选择了多个1小时的高质量脑电图,然后对背景异常进行评分。分级系统评估eeg属性,例如振幅和频率,连续性,睡眠循环,对称性和同步以及异常波形。然后将背景严重程度分为4年级:正常或轻度异常,中度异常,严重异常和不活跃的脑电图。数据可用作用于HIE,用于脑电图训练目的的新生儿的多通道脑电图的参考集,或用于开发和评估自动化等级算法。
translated by 谷歌翻译
生物医学决策涉及来自不同传感器或来自不同信道的多个信号处理。在这两种情况下,信息融合发挥着重要作用。在脑电图循环交替模式中,在这项工作中进行了深度学习的脑电图通道的特征级融合。通过两个优化算法,即遗传算法和粒子群优化优化了频道选择,融合和分类程序。通过融合来自多个脑电图信道的信息来评估开发的方法,用于夜间胸癫痫和没有任何神经疾病的患者的患者,与其他艺术艺术的工作相比,这在显着更具挑战性。结果表明,两种优化算法都选择了一种具有类似特征级融合的可比结构,包括三个脑电图通道,这与帽协议一致,以确保多个通道的唤起帽检测。此外,两种优化模型在接收器的工作特性曲线下达到了0.82的一个区域,平均精度为77%至79%,这是在专业协议的上部范围内的结果。尽管数据集是困难的数据集,所提出的方法仍处于最佳状态的上层,并且具有困难的数据集,并且具有在不需要任何手动过程的情况下提供全自动分析的优点。最终,模型显示出抗噪声和有弹性的多声道损耗。
translated by 谷歌翻译
闭环大脑刺激是指捕获诸如脑电图(EEG)之类的神经生理学措施,迅速识别感兴趣的神经事件,并产生听觉,磁性或电刺激,从而精确地与大脑过程相互作用。这是一种基本神经科学的新方法,也许是临床应用,例如恢复降解记忆功能;但是,现有工具很昂贵,繁琐,并且具有有限的实验灵活性。在本文中,我们提出了Portiloop,这是一种基于深度学习的,便携式和低成本的闭环刺激系统,能够靶向特定的脑振荡。我们首先记录可以从市售组件构建的开放式软件实现。我们还提供了快速,轻巧的神经网络模型和探索算法,该算法自动优化了所需的脑振荡的模型超参数。最后,我们在实时睡眠主轴检测的具有挑战性的测试案例中验证了该技术,结果可与大规模在线数据注释主轴数据集(MODA;组共识)上的离线专家绩效相当。社区可以提供软件和计划,作为开放科学计划,旨在鼓励进一步开发并推动闭环神经科学研究。
translated by 谷歌翻译
分析脑电图时,神经科医生经常在寻找各种“感兴趣的事件”。为了在这项任务中支持他们,已经开发了各种基于机器学习的算法。这些算法中的大多数将问题视为分类,从而独立处理信号段并忽略了持续时间事件固有的时间依赖性。在推理时,必须在处理后进行处理以检测实际事件。我们提出了一种基于深度学习的端到端事件检测方法(EventNet),该方法直接与事件一起作为学习目标,从临时的后处理方案逐渐消失,以将模型输出转化为事件。我们将EventNet与用于人工制品和癫痫发作检测的最新方法进行了比较,这两种事件类型具有高度可变的持续时间。 EventNet在检测两种事件类型方面显示出改进的性能。这些结果表明,将事件视为直接学习目标的力量,而不是使用临时后处理来获取它们。我们的事件检测框架可以轻松地扩展到信号处理中的其他事件检测问题,因为深度学习骨干链不取决于任何特定于任务的功能。
translated by 谷歌翻译
近年来,深度学习显示了广泛区域的潜力和效率,包括计算机视觉,图像和信号处理。然而,由于缺乏算法决策和结果的解释性,用户应用程序仍然存在转化挑战。这个黑匣子问题对于高风险应用程序(例如与医疗相关的决策制定)尤其有问题。当前的研究目标是设计一个可解释的深度学习系统,用于对脑电图的时间序列分类(EEG)进行睡眠阶段评分,以此作为设计透明系统的一步。我们已经开发了一个可解释的深神经网络,该网络包括基于内核的层,该层是基于人类专家在视觉分析记录的视觉分析中用于睡眠评分的一组原理。将基于内核的卷积层定义并用作系统的第一层,并可用于用户解释。训练有素的系统及其结果从脑电图信号的微观结构(例如训练的内核)以及每个内核对检测到的阶段的效果,宏观结构(例如阶段之间的过渡)中解释了四个级别。拟议的系统表现出比先前的研究更大的性能,而解释的结果表明,该系统学习了与专家知识一致的信息。
translated by 谷歌翻译
新生儿癫痫发作是一种通常遇到的神经系统条件。它们是严重神经障碍的第一个临床迹象。因此,需要快速识别和治疗以防止严重的死亡。在神经学领域中使用脑电图(EEG)允许精确地诊断几种医疗条件。然而,解释EEG信号需要高度专业人员的注意,因为婴儿脑在新生儿期间发育不起。检测癫痫发作可能会妨碍对婴儿的神经认知发展的负面影响。近年来,使用机器学习算法的新生儿癫痫发作检测已经获得牵引力。由于需要在癫痫发作检测的情况下对生物信号进行计算廉价的生物信号,因此本研究提供了一种基于机器学习(ML)的架构,其与以前的模型相当的预测性能,但具有最小级别配置。拟议的分类器在赫尔辛基大学医院录制的尼古尔缉获量的公共数据数据上进行了培训和测试。我们的架构实现了87%的最佳敏感性,比本研究中选择的标准ML型号的6%增加了6%。 ML分类器的模型大小优化为仅为4.84 kB,最小预测时间为182.61毫秒,从而使其部署在可穿戴的超边设备上,以便快速准确,并避免基于云的需求和其他这种穷举计算方法。
translated by 谷歌翻译
上肢运动分类将输入信号映射到目标活动,是控制康复机器人技术的关键领域之一。分类器接受了康复系统的培训,以理解上肢无法正常工作的患者的欲望。肌电图(EMG)信号和脑电图(EEG)信号广泛用于上肢运动分类。通过分析实时脑电图和EMG信号的分类结果,系统可以理解用户的意图,并预测人们希望执行的事件。因此,它将为用户提供外部帮助,以协助一个人进行活动。但是,由于嘈杂的环境,并非所有用户都处理有效的脑电图和EMG信号。实时数据收集过程中的噪声污染了数据的有效性。此外,并非所有患者由于肌肉损伤和神经肌肉疾病而处理强大的EMG信号。为了解决这些问题,我们想提出一种新颖的决策级多传感器融合技术。简而言之,该系统将将EEG信号与EMG信号集成,从两个来源检索有效的信息以了解和预测用户的需求,从而提供帮助。通过对包含同时记录的脑电图和EMG信号的公开途径数据集进行测试,我们设法结论了新型系统的可行性和有效性。
translated by 谷歌翻译
EEG信号是复杂且低频信号。因此,它们很容易受到外部因素的影响。脑电图伪像的去除对于神经科学至关重要,因为伪影对脑电图分析的结果有重大影响。在这些文物中,去除眼伪影是最具挑战性的。在这项研究中,通过开发基于双向长期记忆(BILSTM)的深度学习(DL)模型来提出一种新型的眼部伪像去除方法。我们创建了一个基准测试数据集,通过组合Eegdenoisenet和DEAP数据集来训练和测试提出的DL模型。我们还通过以各种SNR级别的EOG污染地面真相清洁的脑电图来增强数据。然后,使用小波同步转换(WSST)获得的高定位时频(TF)系数(WSST)获得的高定位时频(TF)系数,将Bilstm网络馈送到从增强信号中提取的特征。我们还将基于WSST的DL模型结果与传统TF分析(TFA)方法进行比较,即短期傅立叶变换(STFT)和连续小波转换(CWT)以及增强原始信号。最佳的平均MSE值为0.3066是通过首次基于BilstM的WSST-NET模型获得的。我们的结果表明,与传统的TF和原始信号方法相比,WSST-NET模型显着改善了伪影的性能。此外,提出的EOG去除方法表明,它的表现优于文献中许多基于常规和DL的眼神伪像去除方法。
translated by 谷歌翻译
最近在生物医学中大型数据集的可用性激发了多种医疗保健应用的代表性学习方法的开发。尽管预测性能取得了进步,但这种方法的临床实用性在暴露于现实世界数据时受到限制。在这里,我们开发模型诊断措施,以检测部署过程中潜在的陷阱,而无需访问外部数据。具体而言,我们专注于通过数据转换建模电生理信号(EEG)的现实数据转移,并通过分析a)模型的潜在空间和b)预测性不确定性在这些变换下扩展了常规的基于任务的评估。我们使用公开可用的大规模临床EEG进行了多个EEG功能编码器和两个临床相关的下游任务进行实验。在这种实验环境中,我们的结果表明,在提出的数据转移下,潜在空间完整性和模型不确定性的度量可能有助于预测部署过程中的性能退化。
translated by 谷歌翻译
The access to activity of subcortical structures offers unique opportunity for building intention dependent brain-computer interfaces, renders abundant options for exploring a broad range of cognitive phenomena in the realm of affective neuroscience including complex decision making processes and the eternal free-will dilemma and facilitates diagnostics of a range of neurological deceases. So far this was possible only using bulky, expensive and immobile fMRI equipment. Here we present an interpretable domain grounded solution to recover the activity of several subcortical regions from the multichannel EEG data and demonstrate up to 60% correlation between the actual subcortical blood oxygenation level dependent sBOLD signal and its EEG-derived twin. Then, using the novel and theoretically justified weight interpretation methodology we recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei. The described results not only pave the road towards wearable subcortical activity scanners but also showcase an automatic knowledge discovery process facilitated by deep learning technology in combination with an interpretable domain constrained architecture and the appropriate downstream task.
translated by 谷歌翻译
癫痫患者的长期监测来自实时检测和可穿戴设备设计的工程角度呈现出具有挑战性的问题。它需要新的解决方案,允许连续无阻碍的监控和可靠的癫痫发作检测和预测。在癫痫发作期间的人,脑状态和时间实例中存在脑电图(EEG)模式的高可变性,而且在非扣押期间。这使得癫痫癫痫发作检测非常具有挑战性,特别是如果数据仅在癫痫发作和非癫痫标签下分组。超方(HD)计算,一种新型机器学习方法,作为一个有前途的工具。但是,当数据显示高级别的可变性时,它具有一定的限制。因此,在这项工作中,我们提出了一种基于多心高清计算的新型半监督学习方法。多质心方法允许有几个代表癫痫发作和非癫痫发作状态的原型向量,这导致与简单的2级HD模型相比显着提高了性能。此外,现实生活数据不平衡造成了额外的挑战,并且在数据的平衡子集上报告的性能可能被高估。因此,我们测试我们的多质心方法,具有三个不同的数据集平衡方案,显示较少平衡数据集的性能提升更高。更具体地,在不平衡的测试集上实现了高达14%的改进,而不是比癫痫发作数据更加不癫痫发布的10倍。与此同时,与平衡数据集相比,子类的总数不会显着增加。因此,所提出的多质心方法可以是实现具有现实数据余额或在线学习期间实现高性能的重要因素,癫痫发作不常见。
translated by 谷歌翻译